Transport of TiO


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 04 02 2021
accepted: 26 08 2021
pubmed: 11 9 2021
medline: 27 1 2022
entrez: 10 9 2021
Statut: ppublish

Résumé

Nanomaterials are threatening the environment and human health, but there has been little discussion about the stability and mobility of nanoparticles (NPs) in saturated porous media at environmentally relevant concentrations of surfactants, which is a knowledge gap in exploring the fate of engineered NPs in groundwater. Therefore, the influences of the anionic surfactant (sodium dodecylbenzene sulfonate, SDBS), the cationic surfactant (cetyltrimethylammonium bromide, CTAB), and the nonionic surfactant (Tween-80) with environmentally relevant concentrations of 0, 5, 10, and 20 mg/L on nano-TiO

Identifiants

pubmed: 34505247
doi: 10.1007/s11356-021-16266-3
pii: 10.1007/s11356-021-16266-3
doi:

Substances chimiques

Surface-Active Agents 0
titanium dioxide 15FIX9V2JP
Titanium D1JT611TNE

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9306-9317

Subventions

Organisme : National Key R&D Program of China
ID : 2019YFE0114900
Organisme : National Natural Science Foundation of China
ID : 42077175
Organisme : National Natural Science Foundation of China
ID : 41601514
Organisme : National Natural Science Foundation of China
ID : 51961145106
Organisme : National Natural Science Foundation of China
ID : 41701388
Organisme : Shanghai "Science and Technology Innovation Action Plan" Project
ID : 19230742400, 19ZR1459300
Organisme : Shanghai Peak Discipline Project
ID : 0200121005/053, 2019010202
Organisme : International Exchange Program for Graduate Students, Tongji University
ID : 201902053

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aruoja V, Dubourguier H, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468
Bai X, Wang Y, Zheng X, Zhu K, Long A, Wu X, Zhang H (2019) Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82- process and recycling of the surfactant. Chem Eng J 369:1014–1023
Bang SH, Le T, Lee SK, Kim P, Kim JS, Min J (2011) Toxicity Assessment of Titanium (IV) Oxide Nanoparticles Using Daphnia magna (Water Flea). Environ Health Toxicol 26:e2011002
Bradford SA, Bettahar M (2006) Concentration dependent transport of colloids in saturated porous media. J Contam Hydrol 82(1-2):99–117
Carrasco N, Kretzschmar R, Pesch M, Kraemer SM (2007) Low Concentrations of Surfactants Enhance Siderophore-Promoted Dissolution of Goethite. Environ Sci Technol 41(10):3633–3638
Cesmeli S, Biray AC (2019) Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target 27(7):762–766
Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y (2017) Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem Eng J 314:98–113
Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170
Dai C, Shen H, Duan Y, Liu S, Zhou F, Wu D, Zhong G, Javadi A, Tu Y (2019) TiO2 and SiO2 Nanoparticles Combined with Surfactants Mitigate the Toxicity of Cd2+ to Wheat Seedlings. Water Air Soil Pollut 230(11):1–10
Dai C, Zhou H, You X, Duan Y, Tu Y, Liu S, Zhou F, Hon LK (2020) Silica colloids as non-carriers facilitate Pb2+ transport in saturated porous media under a weak adsorption condition: effects of Pb2+ concentrations. Environ Sci Pollut R 27(13):15188–15197
Dederichs T, Möller M, Weichold O (2009) Colloidal Stability of Hydrophobic Nanoparticles in Ionic Surfactant Solutions: Definition of the Critical Dispersion Concentration. Langmuir 25(4):2007–2012
Fan W, Jiang X, Lu Y, Huo M, Lin S, Geng Z (2015a) Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. J Environ Sci-China 35:12–19
Fan W, Jiang XH, Yang W, Geng Z, Huo MX, Liu ZM, Zhou H (2015b) Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na–Ca electrolyte systems. Sci Total Environ 511:509–515
Feriancikova L, Xu S (2012) Deposition and remobilization of graphene oxide within saturated sand packs. J Hazard Mater 235-236:194–200
Gao Q, Wu F, Hu J, Chen W, Zhang X, Guo X, Wang B, Wang X (2020) Chemical composition-dependent removal of cationic surfactants by carbon nanotubes. Sci Total Environ 716:137017
Gaze WH, Abdouslam N, Hawkey PM, Wellington EMH (2005) Incidence of Class 1 Integrons in a Quaternary Ammonium Compound-Polluted Environment. Antimicrob Agents Ch 49(5):1802–1807
Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity. Water Res 45(2):839–851
Godinez IG, Darnault CJG, Khodadoust AP, Bogdan D (2013) Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants. Environ Pollut 174:106–113
Gomes JF, Leal I, Bednarczyk K, Gmurek M, Stelmachowski M, Diak M, Emília Quinta-Ferreira M, Costa R, Quinta-Ferreira RM, Martins RC (2017) Photocatalytic ozonation using doped TiO2 catalysts for the removal of parabens in water. Sci Total Environ 609:329–340
Gregory J (1981) Approximate expressions for retarded van der waals interaction. J Colloid Interface Sci 83(1):138–145
Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651
Hu G, Cao J (2019) Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. Chemosphere 224:726–733
Hua R, Spliid NH, Heinrichson K, Laursen B (2009) Influence of surfactants on the leaching of bentazone in a sandy loam soil. Pest Manag Sci 65(8):857–861
Hurel C, Bignon C, Said-Mohamed C, Amigoni S, Devers T, Guittard F (2018) Functionalized and grafted TiO2, CeO2, and SiO2 nanoparticles—ecotoxicity on Daphnia magna and relevance of ecofriendly polymeric networks. Environ Sci Pollut R 25(21):21216–21223
Kasel D, Bradford SA, Šimůnek J, Heggen M, Vereecken H, Klumpp E (2013) Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size. Water Res 47(2):933–944
Khammar S, Bahramifar N, Younesi H (2020) Preparation and surface engineering of CM-β-CD functionalized Fe3O4@TiO2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil. J Hazard Mater 394:122422
Konkena B, Vasudevan S (2012) Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements. J Phys Chem Lett 3(7):867–872
Li C, Gao Y, Li A, Zhang L, Ji G, Zhu K, Wang X, Zhang Y (2019) Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue. Environ Pollut 254:113005
Lin C, Shih Y, MacFarlane J (2015) Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles. Chem Eng J 262:59–67
Litton GM, Olson TM (1996) Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition. Colloids Surf A Physicochem Eng Asp 107:273–283
Liu L, Gao B, Wu L, Sun Y, Zhou Z (2015) Effects of surfactant type and concentration on graphene retention and transport in saturated porous media. Chem Eng J 262:1187–1191
Lu Y, Xu X, Yang K, Lin D (2013) The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns. Environ Pollut 182:269–277
Lubick N (2008) Nanosilver toxicity: ions, nanoparticles or both? Environ Sci Technol 42(23):8617–8617
Ma H, Pazmino EF, Johnson WP (2011) Gravitational Settling Effects on Unit Cell Predictions of Colloidal Retention in Porous Media in the Absence of Energy Barriers. Environ Sci Technol 45(19):8306–8312
Malakar A, Snow DD (2020) Nanoparticles as sources of inorganic water pollutants. In: Devi P, Singh P , Kansal SK (Devi P, Singh P , Kansal SK)^(Devi P, Singh P , Kansal SKs)|,*Inorganic Pollutants in Water. Elsevier, pp. 337-370
Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: A review. J Hazard Mater 285:419–435
Matthijs E, Holt MS, Kiewiet A, Rijs GBJ (2010) Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environ Toxicol Chem 18(11):2634–2644
Mousavi SA, Khodadoost F (2019) Effects of detergents on natural ecosystems and wastewater treatment processes: a review. Environ Sci Pollut R 26(26):26439–26448
Pazmino EF, Ma H, Johnson WP (2011) Applicability of Colloid Filtration Theory in Size-Distributed, Reduced Porosity, Granular Media in the Absence of Energy Barriers. Environ Sci Technol 45(24):10401–10407
Pérez-Nicolás M, Navarro-Blasco I, Fernández JM, Alvarez JI (2017) Atmospheric NOx removal: Study of cement mortars with iron- and vanadium-doped TiO2 as visible light–sensitive photocatalysts. Constr Build Mater 149:257–271
Porubcan AA, Xu S (2011) Colloid straining within saturated heterogeneous porous media. Water Res 45(4):1796–1806
Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, García-Calvo E, Santiago J, Rosal R (2011) Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms. Toxicol Sci 119(1):135–145
Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8(15):1–7
Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chem Mater 16(11):2187–2193
Service RF (2008) Can high-speed tests sort out which nanomaterials are safe? Science 321(5892):1036–1037
Tan B, Liu S, Dai C, Zhou H, Hui Z, Zhong G, Zhang H (2017) Modelling of colloidal particle and heavy metal transfer behaviours during seawater intrusion and refreshing processes. Hydrol Process 31(22):3920–3931
Tian Y, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12(7):2371–2380
Tkachenko NH, Yaremko ZM, Bellmann C, Soltys MM (2006) The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. J Colloid Interface Sci 299(2):686–695
Troutman JP, Li H, Haddix AM, Kienzle BA, Henkelman G, Humphrey SM, Werth CJ (2020) PdAg Alloy Nanocatalysts: Toward Economically Viable Nitrite Reduction in Drinking Water. ACS Catal 10(14):7979–7989
Tufenkji N, Elimelech M (2004) Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environ Sci Technol 38(2):529–536
Wang D, Paradelo M, Bradford SA, Peijnenburg WJGM, Chu L, Zhou D (2011) Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Res 45(18):5905–5915
Wang D, Su C, Liu C, Zhou D (2014) Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids Surf A Physicochem Eng Asp 457:58–66
Wang L, Wu Z, Wang G, Wang G, Guan Y, Peng F, Song Y, Xu W (2015) Facile synthesis and biological assessment of conjugated linolenic acid-modified, bovine serum albumin-linked, magnetic γ-Fe2O3 nano-composites. Chem Eng J 259:562–573
Wang M, Yu C, Tang D, Chen J, Gao B (2019) Effects of Surfactant and Electrolyte Concentrations, Cation Valence, and Temperature on Graphene Oxide Retention and Transport in Saturated Porous Media. Water Air Soil Pollut 230(1):1–13
Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda SI et al (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6(5):321–328
Yang X, Lu G, She B, Liang X, Yin R, Guo C, Yi X, Dang Z (2015) Cosolubilization of 4,4′-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles. Chem Eng J 260:74–82
Yin X, Jiang Y, Tan Y, Meng X, Sun H, Wang N (2019) Co-transport of graphene oxide and heavy metal ions in surface-modified porous media. Chemosphere 218:1–13
You X, Liu S, Dai C, Guo Y, Zhong G, Duan Y (2020) Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. Sci Total Environ 743:140703
Zhu L, Chang DW, Dai L, Hong Y (2007) DNA Damage Induced by Multiwalled Carbon Nanotubes in Mouse Embryonic Stem Cells. Nano Lett 7(12):3592–3597

Auteurs

Chaomeng Dai (C)

College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.

Hui Shen (H)

College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.

Yanping Duan (Y)

School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, People's Republic of China. duanyanping@shnu.edu.cn.
Institute of Urban Studies, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China. duanyanping@shnu.edu.cn.
Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, Shanghai, People's Republic of China. duanyanping@shnu.edu.cn.

Xueji You (X)

College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China. xjyou@tongji.edu.cn.
Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA. xjyou@tongji.edu.cn.

Xiaoying Lai (X)

College of Management and Economics, Tianjin University, Tianjin, 300072, People's Republic of China.

Shuguang Liu (S)

College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.

Yalei Zhang (Y)

College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.

Leong Kah Hon (LK)

Fac Engn & Green Technol, Dept Environm Engn, Univ Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia.

Kitae Baek (K)

Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo, 57896, Republic of Korea.

Yaojen Tu (Y)

School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, People's Republic of China.

Lang Zhou (L)

Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA.

Di Xu (D)

School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, People's Republic of China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH