Comparative Evaluation of the Polar Organic Chemical Integrative Sampler in Two Types of Validation Systems Simulating Peak Concentration Events.
Bisphenol A
Channel system
Neonicotinoid pesticides
Passive sampler
Polar organic chemical integrative sampler
Validation
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
12
07
2021
received:
31
05
2021
accepted:
02
09
2021
pubmed:
11
9
2021
medline:
16
4
2022
entrez:
10
9
2021
Statut:
ppublish
Résumé
Polar organic chemical integrative sampler (POCIS) devices have been suggested for measuring time-weighted averages (TWAs) of contaminant concentrations resulting from chemical leak accidents in aquatic environments. However, the response of the POCIS device in the emergency condition in natural water remains unclear. The response of the POCIS device to contaminant fluctuation was investigated using a chamber test with tap water and a channel test with natural water. The fluctuation in the chamber and the channel simulated the condition of river water under a chemical leak scenario (maximum concentration: 1-10 μg L
Substances chimiques
Organic Chemicals
0
Pesticides
0
Water Pollutants, Chemical
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3010-3018Informations de copyright
© 2021 SETAC.
Références
Alvarez, D. A., Petty, J. D., Huckins, J. N., Jones-Lepp, T. L., Getting, D. T., Goddard, J. P., & Manahan, S. E. (2004). Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental and Toxicological Chemistry, 23, 1640-1648.
Arditsoglou, A., & Voutsa, D. (2008). Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers. Environmental Pollution, 156(2), 316-324.
Banno, A., & Yabuki, Y. (2020). Simultaneous analysis of seven neonicotinoid pesticides in agricultural products involving solid-phase extraction and surrogate compensation using liquid chromatography-tandem mass spectrometry. Journal of Pesticide Science, 45(1), 29-38. https://doi.org/10.1584/jpestics.D19-055
Becker, B., Kochleus, C., Spira, D., Möhlenkamp, C., Bachtin, J., Meinecke, S., & Vermeirssen, E. L. M. (2021). Passive sampler phases for pesticides: Evaluation of AttractSPE™ SPD-RPS and HLB versus Eempore™ SDB-RPS. Environmental Science and Pollution Research, 28(9), 11697-11707. https://doi.org/10.1007/s11356-020-12109-9
Bernard, M., Boutry, S., Lissalde, S., Guibaud, G., Saüt, M., Rebillard, J.-P., & Mazzella, N. (2019). Combination of passive and grab sampling strategies improves the assessment of pesticide occurrence and contamination levels in a large-scale watershed. Science of the Total Environment, 651, 684-695.
Chuang, C.-W., Huang, W.-S., Chen, H.-S., Hsu, L.-F., Liu, Y.-Y., & Chen, T.-C. (2021). Sorption constant of bisphenol A and octylphenol onto size-fractioned dissolved organic matter using a fluorescence method. International Journal of Environmental Research and Public Health, 18, 1102. https://doi.org/10.3390/ijerph18031102
Criquet, J., Dumoulin, D., Howsam, M., Mondamert, L., Goossens, J.-F., Prygiel, J., & Billon, G. (2017). Comparison of POCIS passive samplers vs. composite water sampling: A case study. Science of the Total Environment, 609, 982-991.
Dalton, R. L., Pick, F. R., Boutin, C., & Saleem, A. (2014). Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS). Environmental Pollution, 189, 134-142.
Kaserzon, S. L., Hawker, D. W., Kennedy, K., Bartkow, M., Carter, S., Booij, K., & Mueller, J. F. (2013). Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers. Environmental Science: Processes & Impacts, 16(11), 2517-2526.
Kaserzon, S. L., Kennedy, K., Hawker, D. W., Thompson, J., Carter, S., Roach, A. C., Booij, K., & Mueller, J. F. (2012). Development and calibration of a passive sampler for perfluorinated alkyl carboxylates and sulfonates in water. Environmental Science & Technology, 46(9), 4985-4993.
Li, H., Vermeirssen, E. L. M., Helm, P. A., & Metcalfe, C. D. (2010). Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. Environmental Toxicology and Chemistry, 29(11), 2461-2469.
Lissalde, S., Mazzella, N., & Mazellier, P. (2014). Polar organic chemical integrative samplers for pesticides monitoring: Impacts of field exposure conditions. Science of the Total Environment, 488-489, 188-196.
Lotufo, G. R., George, R. D., Belden, J. B., Woodley, C., Smith, D. L., & Rosen, G. (2019). Release of munitions constituents in aquatic environments under realistic scenarios and validation of polar organic chemical integrative samplers for monitoring. Environmental Toxicology and Chemistry, 38(11), 2383-2391.
Nishioka, T., Iwasaki, Y., Ishikawa, Y., Yamane, M., Morita, O., & Honda, H. (2019). Validation of Aist-Shanel model based on spatiotemporally extensive monitoring data of linear alkylbenzene sulfonate in Japan: Toward a better strategy on deriving predicted environmental concentrations. Integrated Environmental Assessment and Management, 15(5), 750-759.
Noro, K., Yabuki, Y., Banno, A., Tawa, Y., & Nakamura, S. (2019). Validation of the application of a polar organic chemical integrative sampler (POCIS) in non-steady-state conditions in aquatic environments. Journal of Water and Environment Technology, 17(6), 432-447.
Noro, K., Endo, S., Shikano, Y., Banno, A., & Yabuki, Y. (2020). Development and calibration of the polar organic chemical integrative sampler (POCIS) for neonicotinoid pesticides. Environmental Toxicology and Chemistry, 39(7), 1325-1333.
Noro, K., Ono, J., Yabuki, Y., & Nakamura, S. (2021a). Development and evaluation of the polar organic chemical integrative sampler (POCIS) for linear alkylbenzene sulfonate (LAS). ChemRxiv. https://doi.org/10.26434/chemrxiv.14608164.v2
Noro, K., Yabuki, Y., Banno, A., Ono, J., & Nakamura, S. (2021b). Characterization of the permeation properties of membrane filters and sorption properties of sorbents used for polar organic chemical integrative samplers. ChemRxiv. https://doi.org/10.26434/chemrxiv.14691369.v1
Osaka Prefectural Head Office. (2012). Project of risk reduction in chemical substances under emergency. Retrieved December, 2020, from http://www.pref.osaka.lg.jp/attach/4460/00123678/houkokusho.pdf
Rosen, G., Lotufo, G. R., George, R. D., Wild, B., Rabalais, L. K., Morrison, S., & Belden, J. B. (2018). Field validation of POCIS for monitoring at underwater munitions sites. Environmental Toxicology and Chemistry, 37(8), 2257-2267.
Taylor, A. C., Fones, G. R., & Mills, G. A. (2020). Trends in the use of passive sampling for monitoring polar pesticides in water. Trends in Environmental Analytical Chemistry, 27, e00096.
Thomatou, A.-A., Zacharias, I., Hela, D., & Konstantinou, I. (2011). Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers. Environmental Science and Pollution Research, 18(7), 1222-1233.
Vermeirssen, E. L. M., Asmin, J., Escher, B. I., Kwon, J.-H., Steimen, I., & Hollender, J. (2008). The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with empore™ sdb-rps disks. Journal of Environmental Monitoring, 10(1), 119-128.
Vermeirssen, E. L. M., Bramaz, N., Hollender, J., Singer, H., & Escher, B. I. (2009). Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides-Evaluation of three Chemcatcher™ configurations. Water Research, 43(4), 903-914.
Yabuki, Y., Nagai, T., Inao, K., Ono, J., Aiko, N., Ohtsuka, N., Tanaka, H., & Tanimori, S. (2016). Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS). Bioscience, Biotechnology, and Biochemistry, 80(10), 2069-2075.
Yabuki, Y., Ono, J., Nagai, T., Inao, K., & Tanimori, S. (2018). Determining the suitability of a polar organic chemical integrated sampler (POCIS) for the detection of pesticide residue in the Ishikawa River and its tributary in Osaka, Japan. Journal of Pesticide Science, 43(1), 18-23.
Yargeau, V., Taylor, B., Li, H., Rodayan, A., & Metcalfe, C. D. (2014). Analysis of drugs of abuse in wastewater from two Canadian cities. Science of the Total Environment, 487, 722-730.
Zhang, Z., Troldborg, M., Yates, K., Osprey, M., Kerr, C., Hallett, P. D., Baggaley, N., Rhind, S. M., Dawson, J. J. C., & Hough, R. L. (2016). Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme. Science of the Total Environment, 569-570, 1369-1379.