Novel interferon-sensitive genes unveiled by correlation-driven gene selection and systems biology.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
10 09 2021
Historique:
received: 06 05 2021
accepted: 20 08 2021
entrez: 11 9 2021
pubmed: 12 9 2021
medline: 15 12 2021
Statut: epublish

Résumé

Interferons (IFNs) are key cytokines involved in alerting the immune system to viral infection. After IFN stimulation, cellular transcriptional profile critically changes, leading to the expression of several IFN stimulated genes (ISGs) that exert a wide variety of antiviral activities. Despite many ISGs have been already identified, a comprehensive network of coding and non-coding genes with a central role in IFN-response still needs to be elucidated. We performed a global RNA-Seq transcriptome profile of the HCV permissive human hepatoma cell line Huh7.5 and its parental cell line Huh7, upon IFN treatment, to define a network of genes whose coordinated modulation plays a central role in IFN-response. Our study adds molecular actors, coding and non-coding genes, to the complex molecular network underlying IFN-response and shows how systems biology approaches, such as correlation networks, network's topology and gene ontology analyses can be leveraged to this aim.

Identifiants

pubmed: 34508139
doi: 10.1038/s41598-021-97258-8
pii: 10.1038/s41598-021-97258-8
pmc: PMC8433181
doi:

Substances chimiques

Interferon Regulatory Factors 0
Interferons 9008-11-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18043

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

Heim, M. H. & Thimme, R. Innate and adaptive immune responses in HCV infections. J. Hepatol. 61, S14-25 (2014).
pubmed: 25443342 doi: 10.1016/j.jhep.2014.06.035
Bartenschlager, R. & Pietschmann, T. Efficient hepatitis C virus cell culture system: What a difference the host cell makes. Proc. Natl. Acad. Sci. USA 102, 9739–9740 (2005).
pubmed: 15998731 pmcid: 1175013 doi: 10.1073/pnas.0504296102
Kell, A. M. & Gale, M. RIG-I in RNA virus recognition. Virology 479–480, 110–121 (2015).
pubmed: 25749629 doi: 10.1016/j.virol.2015.02.017
Bartenschlager, R., Kaul, A. & Sparacio, S. Replication of the hepatitis C virus in cell culture. Antiviral Res. 60, 91–102 (2003).
pubmed: 14638404 doi: 10.1016/j.antiviral.2003.08.016
Stanifer, M. L., Pervolaraki, K. & Boulant, S. Differential regulation of type I and type III interferon signaling. Int. J. Mol. Sci. 20 (2019).
Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).
pubmed: 30995506 pmcid: 6839410 doi: 10.1016/j.immuni.2019.03.025
Mesev, E. V., LeDesma, R. A. & Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 4, 914–924 (2019).
pubmed: 30936491 pmcid: 6554024 doi: 10.1038/s41564-019-0421-x
Lazear, H. M., Nice, T. J. & Diamond, M. S. Interferon-λ: Immune functions at barrier surfaces and beyond. Immunity 43, 15–28 (2015).
pubmed: 26200010 pmcid: 4527169 doi: 10.1016/j.immuni.2015.07.001
Mathy, N. W. & Chen, X.-M. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 292, 12375–12382 (2017).
pubmed: 28615453 pmcid: 5535013 doi: 10.1074/jbc.R116.760884
Schoggins, J. W. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6, 567–584 (2019).
pubmed: 31283436 doi: 10.1146/annurev-virology-092818-015756
Maucort-Boulch, D., de Martel, C., Franceschi, S. & Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 142, 2471–2477 (2018).
pubmed: 29388206 doi: 10.1002/ijc.31280
Marcello, T. et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).
pubmed: 17087946 doi: 10.1053/j.gastro.2006.09.052
Arnone, M. I. & Davidson, E. H. The hardwiring of development: Organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997).
pubmed: 9169833 doi: 10.1242/dev.124.10.1851
Miklos, G. L. & Rubin, G. M. The role of the genome project in determining gene function: Insights from model organisms. Cell 86, 521–529 (1996).
pubmed: 8752207 doi: 10.1016/S0092-8674(00)80126-9
Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).
pubmed: 15965475 pmcid: 2841396 doi: 10.1038/ng1589
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).
pubmed: 12934013 doi: 10.1126/science.1087447
Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).
pubmed: 18031580 pmcid: 2267703 doi: 10.1186/1752-0509-1-54
Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).
pubmed: 24555472 pmcid: 4313732 doi: 10.1146/annurev-immunol-032713-120231
Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22 (2007).
doi: 10.1186/1471-2105-8-22
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
pubmed: 12202830 doi: 10.1126/science.1073374
Auerbach, R. K., Chen, B. & Butte, A. J. Relating genes to function: Identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool. Bioinformatics 29, 1922–1924 (2013).
pubmed: 23732275 pmcid: 3712221 doi: 10.1093/bioinformatics/btt316
Yan, J. et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154, 801–813 (2013).
pubmed: 23953112 doi: 10.1016/j.cell.2013.07.034
Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).
pubmed: 25058159 pmcid: 4109854 doi: 10.1371/journal.pcbi.1003731
Stark, G. R. & Darnell, J. E. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).
pubmed: 22520844 pmcid: 3909993 doi: 10.1016/j.immuni.2012.03.013
Kwa, M. Q. et al. Receptor-interacting protein kinase 4 and interferon regulatory factor 6 function as a signaling axis to regulate keratinocyte differentiation. J. Biol. Chem. 289, 31077–31087 (2014).
pubmed: 25246526 pmcid: 4223312 doi: 10.1074/jbc.M114.589382
Bolen, C. R., Ding, S., Robek, M. D. & Kleinstein, S. H. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology 59, 1262–1272 (2014).
pubmed: 23929627 doi: 10.1002/hep.26657
Carnero, E. et al. Type I interferon regulates the expression of long non-coding RNAs. Front. Immunol. 5, 548 (2014).
pubmed: 25414701 pmcid: 4222131 doi: 10.3389/fimmu.2014.00548
Blackham, S. et al. Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J. Virol. 84, 5404–5414 (2010).
pubmed: 20200238 pmcid: 2863852 doi: 10.1128/JVI.02529-09
Grünvogel, O. et al. DDX60L Is an interferon-stimulated gene product restricting hepatitis C virus replication in cell culture. J. Virol. 89, 10548–10568 (2015).
pubmed: 26269178 pmcid: 4580188 doi: 10.1128/JVI.01297-15
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Yamauchi, S. et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci. Rep. 6, 38336 (2016).
pubmed: 27929099 pmcid: 5144079 doi: 10.1038/srep38336
Suarez, B., Prats-Mari, L., Unfried, J. P. & Fortes, P. Lncrnas in the type I interferon antiviral response. Int. J. Mol. Sci. 21 (2020).
Wu, S. et al. miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J. Infect. 67, 329–341 (2013).
pubmed: 23685241 doi: 10.1016/j.jinf.2013.05.003
Fu, Y. et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog. 13, e1006611 (2017).
pubmed: 28910400 pmcid: 5614653 doi: 10.1371/journal.ppat.1006611
Teng, Y. et al. CRISPR/Cas9-mediated deletion of miR-146a enhances antiviral response in HIV-1 infected cells. Genes Immun. 20, 327–337 (2019).
pubmed: 29961753 doi: 10.1038/s41435-018-0036-x
Ho, B.-C. et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat. Commun. 5, 3344 (2014).
pubmed: 24561744 doi: 10.1038/ncomms4344
Blight, K. J., McKeating, J. A. & Rice, C. M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).
pubmed: 12438626 pmcid: 136668 doi: 10.1128/JVI.76.24.13001-13014.2002
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).
pubmed: 18024473 doi: 10.1093/bioinformatics/btm563
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Kijima, S. & Kijima, H. Statistical analysis of channel current from a membrane patch. II. A stochastic theory of a multi-channel system in the steady-state. J. Theor. Biol. 128, 435–455 (1987).
pubmed: 2451770 doi: 10.1016/S0022-5193(87)80189-3
Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683 doi: 10.1093/bioinformatics/btl140
Raudvere, U. et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucl. Acids Res. 47, W191–W198 (2019).
pubmed: 31066453 pmcid: 6602461 doi: 10.1093/nar/gkz369
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139 doi: 10.1093/bioinformatics/btu393

Auteurs

Cristina Cheroni (C)

Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.
High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.

Lara Manganaro (L)

Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.

Lorena Donnici (L)

Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.

Valeria Bevilacqua (V)

Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.

Raoul J P Bonnal (RJP)

Integrative Biology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy.

Riccardo L Rossi (RL)

Bioinformatics, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy. rossi@ingm.org.

Raffaele De Francesco (R)

Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122, Milan, Italy. defrancesco@ingm.org.
Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy. defrancesco@ingm.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH