Novel interferon-sensitive genes unveiled by correlation-driven gene selection and systems biology.
Binding Sites
Cell Line, Tumor
Computational Biology
/ methods
Gene Expression Profiling
/ methods
Gene Expression Regulation
/ drug effects
Gene Regulatory Networks
Humans
Interferon Regulatory Factors
/ genetics
Interferons
/ metabolism
Liver Neoplasms
Nucleotide Motifs
Protein Binding
Systems Biology
/ methods
Transcriptome
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 09 2021
10 09 2021
Historique:
received:
06
05
2021
accepted:
20
08
2021
entrez:
11
9
2021
pubmed:
12
9
2021
medline:
15
12
2021
Statut:
epublish
Résumé
Interferons (IFNs) are key cytokines involved in alerting the immune system to viral infection. After IFN stimulation, cellular transcriptional profile critically changes, leading to the expression of several IFN stimulated genes (ISGs) that exert a wide variety of antiviral activities. Despite many ISGs have been already identified, a comprehensive network of coding and non-coding genes with a central role in IFN-response still needs to be elucidated. We performed a global RNA-Seq transcriptome profile of the HCV permissive human hepatoma cell line Huh7.5 and its parental cell line Huh7, upon IFN treatment, to define a network of genes whose coordinated modulation plays a central role in IFN-response. Our study adds molecular actors, coding and non-coding genes, to the complex molecular network underlying IFN-response and shows how systems biology approaches, such as correlation networks, network's topology and gene ontology analyses can be leveraged to this aim.
Identifiants
pubmed: 34508139
doi: 10.1038/s41598-021-97258-8
pii: 10.1038/s41598-021-97258-8
pmc: PMC8433181
doi:
Substances chimiques
Interferon Regulatory Factors
0
Interferons
9008-11-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18043Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
Heim, M. H. & Thimme, R. Innate and adaptive immune responses in HCV infections. J. Hepatol. 61, S14-25 (2014).
pubmed: 25443342
doi: 10.1016/j.jhep.2014.06.035
Bartenschlager, R. & Pietschmann, T. Efficient hepatitis C virus cell culture system: What a difference the host cell makes. Proc. Natl. Acad. Sci. USA 102, 9739–9740 (2005).
pubmed: 15998731
pmcid: 1175013
doi: 10.1073/pnas.0504296102
Kell, A. M. & Gale, M. RIG-I in RNA virus recognition. Virology 479–480, 110–121 (2015).
pubmed: 25749629
doi: 10.1016/j.virol.2015.02.017
Bartenschlager, R., Kaul, A. & Sparacio, S. Replication of the hepatitis C virus in cell culture. Antiviral Res. 60, 91–102 (2003).
pubmed: 14638404
doi: 10.1016/j.antiviral.2003.08.016
Stanifer, M. L., Pervolaraki, K. & Boulant, S. Differential regulation of type I and type III interferon signaling. Int. J. Mol. Sci. 20 (2019).
Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).
pubmed: 30995506
pmcid: 6839410
doi: 10.1016/j.immuni.2019.03.025
Mesev, E. V., LeDesma, R. A. & Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 4, 914–924 (2019).
pubmed: 30936491
pmcid: 6554024
doi: 10.1038/s41564-019-0421-x
Lazear, H. M., Nice, T. J. & Diamond, M. S. Interferon-λ: Immune functions at barrier surfaces and beyond. Immunity 43, 15–28 (2015).
pubmed: 26200010
pmcid: 4527169
doi: 10.1016/j.immuni.2015.07.001
Mathy, N. W. & Chen, X.-M. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 292, 12375–12382 (2017).
pubmed: 28615453
pmcid: 5535013
doi: 10.1074/jbc.R116.760884
Schoggins, J. W. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6, 567–584 (2019).
pubmed: 31283436
doi: 10.1146/annurev-virology-092818-015756
Maucort-Boulch, D., de Martel, C., Franceschi, S. & Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 142, 2471–2477 (2018).
pubmed: 29388206
doi: 10.1002/ijc.31280
Marcello, T. et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).
pubmed: 17087946
doi: 10.1053/j.gastro.2006.09.052
Arnone, M. I. & Davidson, E. H. The hardwiring of development: Organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997).
pubmed: 9169833
doi: 10.1242/dev.124.10.1851
Miklos, G. L. & Rubin, G. M. The role of the genome project in determining gene function: Insights from model organisms. Cell 86, 521–529 (1996).
pubmed: 8752207
doi: 10.1016/S0092-8674(00)80126-9
Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).
pubmed: 15965475
pmcid: 2841396
doi: 10.1038/ng1589
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).
pubmed: 12934013
doi: 10.1126/science.1087447
Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).
pubmed: 18031580
pmcid: 2267703
doi: 10.1186/1752-0509-1-54
Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).
pubmed: 24555472
pmcid: 4313732
doi: 10.1146/annurev-immunol-032713-120231
Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22 (2007).
doi: 10.1186/1471-2105-8-22
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
pubmed: 12202830
doi: 10.1126/science.1073374
Auerbach, R. K., Chen, B. & Butte, A. J. Relating genes to function: Identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool. Bioinformatics 29, 1922–1924 (2013).
pubmed: 23732275
pmcid: 3712221
doi: 10.1093/bioinformatics/btt316
Yan, J. et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154, 801–813 (2013).
pubmed: 23953112
doi: 10.1016/j.cell.2013.07.034
Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).
pubmed: 25058159
pmcid: 4109854
doi: 10.1371/journal.pcbi.1003731
Stark, G. R. & Darnell, J. E. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).
pubmed: 22520844
pmcid: 3909993
doi: 10.1016/j.immuni.2012.03.013
Kwa, M. Q. et al. Receptor-interacting protein kinase 4 and interferon regulatory factor 6 function as a signaling axis to regulate keratinocyte differentiation. J. Biol. Chem. 289, 31077–31087 (2014).
pubmed: 25246526
pmcid: 4223312
doi: 10.1074/jbc.M114.589382
Bolen, C. R., Ding, S., Robek, M. D. & Kleinstein, S. H. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology 59, 1262–1272 (2014).
pubmed: 23929627
doi: 10.1002/hep.26657
Carnero, E. et al. Type I interferon regulates the expression of long non-coding RNAs. Front. Immunol. 5, 548 (2014).
pubmed: 25414701
pmcid: 4222131
doi: 10.3389/fimmu.2014.00548
Blackham, S. et al. Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J. Virol. 84, 5404–5414 (2010).
pubmed: 20200238
pmcid: 2863852
doi: 10.1128/JVI.02529-09
Grünvogel, O. et al. DDX60L Is an interferon-stimulated gene product restricting hepatitis C virus replication in cell culture. J. Virol. 89, 10548–10568 (2015).
pubmed: 26269178
pmcid: 4580188
doi: 10.1128/JVI.01297-15
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Yamauchi, S. et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci. Rep. 6, 38336 (2016).
pubmed: 27929099
pmcid: 5144079
doi: 10.1038/srep38336
Suarez, B., Prats-Mari, L., Unfried, J. P. & Fortes, P. Lncrnas in the type I interferon antiviral response. Int. J. Mol. Sci. 21 (2020).
Wu, S. et al. miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J. Infect. 67, 329–341 (2013).
pubmed: 23685241
doi: 10.1016/j.jinf.2013.05.003
Fu, Y. et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog. 13, e1006611 (2017).
pubmed: 28910400
pmcid: 5614653
doi: 10.1371/journal.ppat.1006611
Teng, Y. et al. CRISPR/Cas9-mediated deletion of miR-146a enhances antiviral response in HIV-1 infected cells. Genes Immun. 20, 327–337 (2019).
pubmed: 29961753
doi: 10.1038/s41435-018-0036-x
Ho, B.-C. et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat. Commun. 5, 3344 (2014).
pubmed: 24561744
doi: 10.1038/ncomms4344
Blight, K. J., McKeating, J. A. & Rice, C. M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).
pubmed: 12438626
pmcid: 136668
doi: 10.1128/JVI.76.24.13001-13014.2002
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).
pubmed: 18024473
doi: 10.1093/bioinformatics/btm563
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Kijima, S. & Kijima, H. Statistical analysis of channel current from a membrane patch. II. A stochastic theory of a multi-channel system in the steady-state. J. Theor. Biol. 128, 435–455 (1987).
pubmed: 2451770
doi: 10.1016/S0022-5193(87)80189-3
Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683
doi: 10.1093/bioinformatics/btl140
Raudvere, U. et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucl. Acids Res. 47, W191–W198 (2019).
pubmed: 31066453
pmcid: 6602461
doi: 10.1093/nar/gkz369
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139
doi: 10.1093/bioinformatics/btu393