Elastic resistance training is more effective than vitamin D3 supplementation in reducing oxidative stress and strengthen antioxidant enzymes in healthy men.
Journal
European journal of clinical nutrition
ISSN: 1476-5640
Titre abrégé: Eur J Clin Nutr
Pays: England
ID NLM: 8804070
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
13
02
2021
accepted:
18
08
2021
revised:
20
07
2021
pubmed:
12
9
2021
medline:
13
4
2022
entrez:
11
9
2021
Statut:
ppublish
Résumé
Today, reducing oxidative stress and improving the antioxidant system with antioxidant supplements along with exercise training has received a lot of attention. Vitamin D plays a very important role in general health and reducing oxidative stress. The aim of this study was to examine the effect of vitamin D3 supplements during elastic-band resistance training (EBT) on oxidative stress and antioxidant indices in healthy men. Forty healthy men (Serum: 20 ≤ 25 (OH) D ≤ 25 ng/mL) voluntarily participated in the current study and randomly were assigned to EBT-vitamin D3 (ED, n = 10), EBT-placebo (EP, n = 10), vitamin D3 (VD, n = 10), and control (Con, n = 10). EBT was performed three times per week on non-consecutive days for eight weeks, in seven exercises. The subjects in the ED, VD, and EP consumed 50,000 IU vitamin D3 or placebo once every 2 weeks. Ten ccs blood samples were collected before and after exercise training and the total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), and creatine kinase (CK) activities were measured in the plasma. Malondialdehyde (MDA), as the lipid peroxidation index, and 25(OH) D were measured in the plasma. We found that there was a significant difference between ED with VD (p = 0.011) and Con (p = 0.022) for MDA. A significant difference was also seen for SOD in ED with VD (p = 0.024) and Con (p = 0.038) and TAC in ED with VD (p = 0.020) and Con (p = 0.030), and GPX in ED with VD (p = 0.040) and Con (p = 0.010). While there were no significant differences between ED and EP in all mentioned variables (p > 0.05). Finally, it can be said that elastic resistance training improved antioxidant defence. However, vitamin D3 supplementation during resistance elastic training has no synergistic effect on attenuating oxidative stress indices.
Identifiants
pubmed: 34508257
doi: 10.1038/s41430-021-01000-6
pii: 10.1038/s41430-021-01000-6
pmc: PMC8431951
doi:
Substances chimiques
Antioxidants
0
Cholecalciferol
1C6V77QF41
Glutathione Peroxidase
EC 1.11.1.9
Superoxide Dismutase
EC 1.15.1.1
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
610-615Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2019;99:311–79. https://doi.org/10.1152/physrev.00036.2017 .
doi: 10.1152/physrev.00036.2017
pubmed: 30379623
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19. https://doi.org/10.1186/1756-8722-6-19 .
doi: 10.1186/1756-8722-6-19
pubmed: 23442817
pmcid: 3599349
Silva JP, Coutinho OP. Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discov Ther. 2010;4:144–67.
pubmed: 22491178
Yasui K, Baba A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res. 2006;55:359–63.
doi: 10.1007/s00011-006-5195-y
pubmed: 17122956
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15:1957–97. https://doi.org/10.1089/ars.2010.3586
doi: 10.1089/ars.2010.3586
pubmed: 21087145
pmcid: 3159114
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D. et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;26:757–72. https://doi.org/10.2147/CIA.S158513 .
doi: 10.2147/CIA.S158513
Da Palma RK, Moraes-Silva IC, da Silva Dias D, Shimojo GL, Conti FF, Bernardes N. et al. Resistance or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats. J Appl Physiol. 2016;121:1032–8. https://doi.org/10.1152/japplphysiol.00130.2016 .
doi: 10.1152/japplphysiol.00130.2016
pubmed: 27339182
Azizbeigi K, Stannard SR, Atashak S. Green tea supplementation during resistance training minimally affects systemic inflammation and oxidative stress indices in obese men. Jundishapur J Nat Pharm Prod. 2019;14:e61419 https://doi.org/10.5812/jjnpp.61419
doi: 10.5812/jjnpp.61419
Azizbeigi K, Azarbayjani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013;23:230–8. https://doi.org/10.1123/ijsnem.23.3.230
doi: 10.1123/ijsnem.23.3.230
pubmed: 23239675
Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol. 2005;40:173–80. https://doi.org/10.1016/j.exger.2004.09.002
doi: 10.1016/j.exger.2004.09.002
pubmed: 15763394
Vincent HK, Bourguignon C, Vincent KR. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity. 2006;14:1921–30. https://doi.org/10.1038/oby.2006.224
doi: 10.1038/oby.2006.224
pubmed: 17135607
Liu CJ, Latham N. Adverse events reported in progressive resistance strength training trials in older adults: 2 sides of a coin. Arch Phys Med Rehabil. 2010;91:1471–3. https://doi.org/10.1016/j.apmr.2010.06.001
doi: 10.1016/j.apmr.2010.06.001
pubmed: 20801270
Page P, Ellenbecker TS. Strength band training. Human kinetics, Leeds. 2011.
Thomas M, Mueller T, Busse MW. Quantification of tension in thera-band and cando tubing at different strains and starting lengths. J Sports Med Phys Fit. 2005;45:188–98.
Hostler DC, Schwirian I, Campos G, Toma K, Crill MT, Hagerman GR, et al. Skeletal muscle adaptations in elastic resistance-trained young men and women. Eur J Appl Physiol. 2001;86:112–8. https://doi.org/10.1007/s004210100495
doi: 10.1007/s004210100495
pubmed: 11822469
Lopes J, Machado AF, Micheletti JK, de Almeida AC, Cavina AP, Pastre CM. Effects of training with elastic resistance versus conventional resistance on muscular strength: a systematic review and meta-analysis. SAGE Open Med. 2019;7:2050312119831116 https://doi.org/10.1177/2050312119831116
doi: 10.1177/2050312119831116
pubmed: 30815258
pmcid: 6383082
Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med. 2015;6:e24898 https://doi.org/10.5812/asjsm.24898
doi: 10.5812/asjsm.24898
pubmed: 25883776
pmcid: 4393546
Holick F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S–88S. https://doi.org/10.1093/ajcn/80.6.1678S . (6 Suppl)
doi: 10.1093/ajcn/80.6.1678S
pubmed: 15585788
Kassambara A. rstatix: pipe-friendly framework for basic statistical tests. 2020. https://rpkgs.datanovia.com/rstatix/ .
Jackson AS, Pollock ML. Practical assessment of body composition. Phys Sportsmed. 1985;13:76–90. https://doi.org/10.1080/00913847.1985.11708790
doi: 10.1080/00913847.1985.11708790
pubmed: 27463295
Colado JC, Triplett NT. Effect of a short-term resistance program using elastic band versus weight machines for sedentary meddle-age women. J Strength Cond Res. 2008;22:1441–8.
doi: 10.1519/JSC.0b013e31817ae67a
pubmed: 18714245
Bavaresco Gambassi B, Lopes Dos Santos MD, Furtado Almeida FJ. Basic guide for the application of the main variables of resistance training in elderly. Aging Clin Exp Res. 2019;31:1019–20. https://doi.org/10.1007/s40520-019-01181-y
doi: 10.1007/s40520-019-01181-y
pubmed: 30929226
Janusevicius D, Snieckus A, Skurvydas A, Silinskas V, Trinkunas E, Cadefau JA, et al. Effects of high velocity elastic band versus heavy resistance training on hamstring strength, activation, and sprint running performance. J Sports Sci Med. 2017;16:239–46.
pubmed: 28630577
pmcid: 5465986
Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10.
doi: 10.1016/S0076-6879(78)52032-6
pubmed: 672633
Seene T, Kaasik P, Riso EM. Review on aging, unloading and reloading: changes in skeletal muscle quantity and quality. Arch Gerontol Geriatr. 2012;54:374–80. https://doi.org/10.1016/j.archger.2011.05.002
doi: 10.1016/j.archger.2011.05.002
pubmed: 21632125
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98. https://doi.org/10.1038/s41574-019-0176-8
doi: 10.1038/s41574-019-0176-8
pubmed: 30814686
Sakurai T, Ogasawara J, Shirato K, Izawa T, Oh-Ishi S, Ishibashi Y, et al. Exercise training attenuates the dysregulated expression of adipokines and oxidative stress in white adipose tissue. Oxid Med Cell. 2017;2017:9410954. https://doi.org/10.1155/2017/9410954 .
doi: 10.1155/2017/9410954
Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016:7239639. https://doi.org/10.1155/2016/7239639
Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Res. Sports Med. 2015;23:73–87. https://doi.org/10.1080/15438627.2014.975807
doi: 10.1080/15438627.2014.975807
pubmed: 25630248
Güzel NA, Hazar S, Erbas D. Effects of different resistance exercise protocols on nitric oxide, lipid peroxidation and creatine kinase activity in sedentary males. J Sports Sci Med. 2007;6:417–22.
pubmed: 24149472
pmcid: 3794479
Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993;326:285–8. 12
doi: 10.1016/0014-5793(93)81809-E
pubmed: 8325381
Marsh SA, Laursen PB, Coombes JS. Effects of antioxidant supplementation and exercise training on erythrocyte antioxidant enzymes. Int J Vitam Nutr Res. 2006;76:324–31.
doi: 10.1024/0300-9831.76.5.324
pubmed: 17245671
Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8:72 https://doi.org/10.3390/antiox8030072 . Published 2019 Mar 25
doi: 10.3390/antiox8030072
pmcid: 6466575
Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Clin Nutr. 2004;43:2–6. https://doi.org/10.1007/s00394-004-0432-z
doi: 10.1007/s00394-004-0432-z
Hoffman JR, Im J, Kang J, Maresh CM, Kraemer WJ, French D, et al. Composition low- and high- intensity resistance exercise on lipid peroxidation: role of muscle oxygenation. J Strength Cond Res. 2007;21:118–22. https://doi.org/10.1519/00124278-200702000-00022
doi: 10.1519/00124278-200702000-00022
pubmed: 17313297
Halliday T, Peterson N, Thomas J, Kleppinger K, Hollis B, Larson-Meyer D. Vitamin D status relative to diet, lifestyle, injury and illness in college athletes. Med Sci Sports Exerc. 2011;43:335–43. https://doi.org/10.1249/MSS.0b013e3181eb9d4d
doi: 10.1249/MSS.0b013e3181eb9d4d
pubmed: 20543748
Cannell JJ, Hollis BW. Use of vitamin D in clinical practice. Alter Med Rev. 2008;13:6–20. PMID: 18377099
Close GL, Russel J, Cobley JN, Owens DJ, Wilson G, Gregson W, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: Implications for skeletal muscle function. J Sports Sci. 2013;31:344–53. https://doi.org/10.1080/02640414.2012.733822
doi: 10.1080/02640414.2012.733822
pubmed: 23083379