Profiling of Blood-Brain Barrier Disruption in Mouse Intracerebral Hemorrhage Models: Collagenase Injection vs. Autologous Arterial Whole Blood Infusion.
aquaporin 4
autologous blood
blood-brain barrier
collagenase
intracerebral hemorrhage
matrix metalloproteinase-9
tight junction
transmission electron microscope
Journal
Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935
Informations de publication
Date de publication:
2021
2021
Historique:
received:
24
04
2021
accepted:
16
06
2021
entrez:
13
9
2021
pubmed:
14
9
2021
medline:
14
9
2021
Statut:
epublish
Résumé
Disruption of the blood-brain barrier (BBB) and the subsequent formation of brain edema is the most severe consequence of intracerebral hemorrhage (ICH), leading to drastic neuroinflammatory responses and neuronal cell death. A better understanding of ICH pathophysiology to develop effective therapy relies on selecting appropriate animal models. The collagenase injection ICH model and the autologous arterial whole blood infusion ICH model have been developed to investigate the pathophysiology of ICH. However, it remains unclear whether the temporal progression and the underlying mechanism of BBB breakdown are similar between these two ICH models. In this study, we aimed to determine the progression and the mechanism of BBB disruption via the two commonly used murine ICH models: the collagenase-induced ICH model (c-ICH) and the double autologous whole blood ICH model (b-ICH). Intrastriatal injection of 0.05 U collagenase or 20 μL autologous blood was used for a comparable hematoma volume in these two ICH models. Then we analyzed BBB permeability using Evan's blue and IgG extravasation, evaluated tight junction (TJ) damage by transmission electron microscope (TEM) and Western blotting, and assessed matrix metalloproteinase-9 (MMP-9) activity and aquaporin 4 (AQP4) mRNA expression by Gelatin gel zymography and RT-PCR, respectively. The results showed that the BBB leakage was associated with a decrease in TJ protein expression and an increase in MMP-9 activity and AQP4 expression on day 3 in the c-ICH model compared with that on day 5 in the b-ICH model. Additionally, using TEM, we found that the TJ was markedly damaged on day 3 in the c-ICH model compared with that on day 5 in the b-ICH model. In conclusion, the BBB was disrupted in the two ICH models; compared to the b-ICH model, the c-ICH model presented with a more pronounced disruption of BBB at earlier time points, suggesting that the c-ICH model might be a more suitable model for studying early BBB damage and protection after ICH.
Identifiants
pubmed: 34512265
doi: 10.3389/fncel.2021.699736
pmc: PMC8427528
doi:
Types de publication
Journal Article
Langues
eng
Pagination
699736Informations de copyright
Copyright © 2021 Jia, He, Li, Wang, Jia, Hao, Lai, Zang, Chen and Wang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Exp Transl Stroke Med. 2011 Oct 03;3(1):11
pubmed: 21967730
Curr Pharm Des. 2008;14(4):352-8
pubmed: 18289061
Brain Behav Immun. 2018 Mar;69:568-581
pubmed: 29458197
J Cereb Blood Flow Metab. 2017 Sep;37(9):3110-3123
pubmed: 28534662
Int J Med Sci. 2017 Mar 11;14(4):333-339
pubmed: 28553165
J Cereb Blood Flow Metab. 2010 Dec;30(12):1939-50
pubmed: 20354546
J Cereb Blood Flow Metab. 2008 Mar;28(3):516-25
pubmed: 17726491
J Cereb Blood Flow Metab. 2016 Jan;36(1):216-27
pubmed: 25757756
Behav Pharmacol. 2007 Nov;18(7):583-9
pubmed: 17912042
PLoS One. 2013;8(3):e57503
pubmed: 23505432
Front Mol Neurosci. 2017 May 05;10:126
pubmed: 28529474
J Cereb Blood Flow Metab. 2004 Aug;24(8):926-33
pubmed: 15362723
Brain. 2005 Jul;128(Pt 7):1622-33
pubmed: 15800021
Ann Clin Transl Neurol. 2014 Apr 1;1(4):258-271
pubmed: 24741667
Brain Sci. 2019 Nov 09;9(11):
pubmed: 31717522
Nat Rev Neurol. 2017 Jul;13(7):420-433
pubmed: 28524175
FASEB J. 2020 Feb;34(2):2774-2791
pubmed: 31912591
Neurology. 2019 Sep 17;93(12):e1159-e1170
pubmed: 31420462
Handb Clin Neurol. 2017;145:25-37
pubmed: 28987174
Brain Behav Immun. 2015 May;46:293-310
pubmed: 25697396
J Cereb Blood Flow Metab. 2011 May;31(5):1243-50
pubmed: 21102602
Neurosci Lett. 2019 Mar 23;696:156-161
pubmed: 30578930
Cerebrovasc Dis. 2016;42(3-4):155-69
pubmed: 27110940
Neuroradiology. 2017 Jul;59(7):677-684
pubmed: 28580533
Neurochem Int. 2010 Oct;57(3):248-53
pubmed: 20541575
JCI Insight. 2017 Apr 6;2(7):e90777
pubmed: 28405617
Prog Neurobiol. 2010 Dec;92(4):463-77
pubmed: 20713126
Brain Res. 2010 Jun 25;1342:111-7
pubmed: 20420814
Brain Res. 2008 Jul 30;1222:214-21
pubmed: 18586227
Front Aging Neurosci. 2021 Jan 28;13:623751
pubmed: 33584250
Prog Neurobiol. 2018 Feb;161:79-96
pubmed: 29217457
J Angiogenes Res. 2010 Jan 14;2:1
pubmed: 20150991
Front Neurol. 2018 Jul 17;9:581
pubmed: 30065697
J Cereb Blood Flow Metab. 2020 Sep;40(9):1752-1768
pubmed: 32423330
Neurobiol Dis. 2017 Dec;108:173-182
pubmed: 28830843
Nat Protoc. 2008;3(1):122-8
pubmed: 18193028
Free Radic Biol Med. 2019 Feb 1;131:345-355
pubmed: 30553970
J Cereb Blood Flow Metab. 2016 Jun;36(6):1059-74
pubmed: 26661165
J Neuroinflammation. 2014 Oct 31;11:184
pubmed: 25359421
Sci Rep. 2017 Jan 13;7:40358
pubmed: 28084426
Magn Reson Med. 2015 Jul;74(1):42-50
pubmed: 25879165
J Neuroinflammation. 2019 Oct 28;16(1):192
pubmed: 31660977
Brain Behav Immun. 2017 Feb;60:1-12
pubmed: 26995317
Brain. 2017 Jul 1;140(7):1914-1931
pubmed: 28535201