Endoplasmic reticulum stress is involved in retinal injury induced by repeated transient spikes of intraocular pressure.
Animals
Apoptosis
Disease Models, Animal
Endoplasmic Reticulum Stress
/ physiology
Glaucoma
/ complications
Intraocular Pressure
/ physiology
Male
Membrane Proteins
/ physiology
Mice
Mice, Inbred C57BL
Protein Serine-Threonine Kinases
/ physiology
Retinal Diseases
/ etiology
Retinal Ganglion Cells
/ pathology
Signal Transduction
/ physiology
Endoplasmic reticulum (ER) stress
Glaucoma
Intraocular pressure spike (Spike IOP)
Neuron apoptosis
Retinal injury
Journal
Journal of Zhejiang University. Science. B
ISSN: 1862-1783
Titre abrégé: J Zhejiang Univ Sci B
Pays: China
ID NLM: 101236535
Informations de publication
Date de publication:
Historique:
entrez:
13
9
2021
pubmed:
14
9
2021
medline:
1
2
2022
Statut:
ppublish
Résumé
Clinically, a large proportion of glaucoma patients undergo repeated intraocular pressure (IOP) spike (Spike IOP) attacks during their sleep, which may facilitate retinopathy. In this study, we established a mouse model of repeated transient Spike IOP to investigate the direct damage to the retina following Spike IOP attacks, and elucidated the underlying molecular mechanism. We analyzed the changes in the number of retinal ganglion cells (RGCs) via immunofluorescence. Thereafter, we detected retinal cell apoptosis via terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining, and performed RNA sequencing (RNA-seq) to reveal the underlying molecular mechanism. Finally, we validated the expression of key molecules in the endoplasmic reticulum (ER) stress pathway using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Results revealed a time-dependent RGC loss in Spike IOP, evidenced by a reduction in the number of Brn3a-positive RGCs in experimental eyes following a 7-d continuous treatment with Spike IOP. In addition, TUNEL staining indicated that apoptosis of retinal cells started in the outer nuclear layer (ONL), and then spread to the ganglion cell layer (GCL) with time. RNA-seq analysis revealed that ER stress might be involved in Spike IOP-induced retinal injury. This result was corroborated by western blot, which revealed upregulation of ER stress-related proteins including binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78), phosphorylated inositol-requiring enzyme 1 (p-IRE1), unspliced X-box-binding protein 1 (XBP1-u), spliced X-box-binding protein 1 (XBP1-s), phosphorylated c-Jun N-terminal kinase (p-JNK), C/EBP-homologous protein (CHOP), and B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax). These findings indicate that repeated IOP transients are detrimental to the retina, while ER stress plays an important role in retinal cell apoptosis in this situation. Notably, repeated Spike IOP among glaucoma patients is a crucial factor for progressive retinopathy.
Identifiants
pubmed: 34514754
pii: 1673-1581(2021)09-0746-11
doi: 10.1631/jzus.B2100053
pmc: PMC8435347
pii:
doi:
Substances chimiques
Membrane Proteins
0
Ern2 protein, mouse
EC 2.7.1.-
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
746-756Références
Br J Ophthalmol. 2011 Jan;95(1):131-41
pubmed: 20956277
Nat Rev Neurol. 2017 Aug;13(8):477-491
pubmed: 28731040
Invest Ophthalmol Vis Sci. 2012 Nov 09;53(12):7590-9
pubmed: 23074209
Ophthalmology. 2010 Nov;117(11):2075-9
pubmed: 20663566
J Ocul Pharmacol Ther. 2012 Feb;28(1):26-32
pubmed: 22004074
Invest Ophthalmol Vis Sci. 2019 May 1;60(6):1953-1966
pubmed: 31060051
Exp Eye Res. 2019 Mar;180:77-85
pubmed: 30562486
Neuron. 2012 Feb 9;73(3):445-52
pubmed: 22325198
Ophthalmology. 1991 Jan;98(1):64-9
pubmed: 2023735
Arch Ophthalmol. 2000 Feb;118(2):235-45
pubmed: 10676789
Int J Mol Sci. 2019 Jan 18;20(2):
pubmed: 30669355
J Ophthalmol. 2016;2016:4727423
pubmed: 27525110
Acta Ophthalmol. 2017 Feb;95(1):e10-e21
pubmed: 27535721
Genes Dev. 2009 Oct 1;23(19):2294-306
pubmed: 19762508
Exp Eye Res. 2015 Mar;132:17-33
pubmed: 25576772
Neural Regen Res. 2019 Jul;14(7):1186-1190
pubmed: 30804243
Int Ophthalmol. 2020 Dec;40(12):3323-3336
pubmed: 32725401
J Zhejiang Univ Sci B. 2020 Apr.;21(4):305-314
pubmed: 32253840
J Neurosci. 2016 May 25;36(21):5891-903
pubmed: 27225776
Invest Ophthalmol Vis Sci. 2003 Apr;44(4):1586-90
pubmed: 12657596
Acta Neuropathol. 2006 Feb;111(2):158-67
pubmed: 16453144
Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2532-6
pubmed: 1634350
J Glaucoma. 2000 Apr;9(2):134-42
pubmed: 10782622
Mol Med. 2010 Nov-Dec;16(11-12):535-42
pubmed: 20683548
Neural Regen Res. 2018 Nov;13(11):1885-1886
pubmed: 30233058
Sci China Life Sci. 2016 May;59(5):495-503
pubmed: 26920679
Arch Ophthalmol. 2006 Jun;124(6):793-7
pubmed: 16769832
Elife. 2013 Jun 18;2:e00948
pubmed: 23795301
Front Neuroanat. 2017 Mar 06;11:14
pubmed: 28321183
Nat Rev Drug Discov. 2008 Dec;7(12):1013-30
pubmed: 19043451
JAMA. 2014 May 14;311(18):1901-11
pubmed: 24825645
Ophthalmology. 2004 Sep;111(9):1627-35
pubmed: 15350314
Sci China Life Sci. 2020 Nov;63(11):1762-1765
pubmed: 32567001
Ophthalmology. 2014 Nov;121(11):2081-90
pubmed: 24974815
Invest Ophthalmol Vis Sci. 2007 Nov;48(11):5191-8
pubmed: 17962473
Invest Ophthalmol Vis Sci. 2013 Aug 28;54(8):5888-900
pubmed: 23908186
Mol Vis. 2011 Apr 06;17:864-75
pubmed: 21527996