Condylar constrained knee prosthesis and rotating hinge prosthesis for revision total knee arthroplasty for mechanical failure have not the same indications and same results.
Clinical outcomes
Condylar constrained knee prosthesis
Rotating hinge knee prosthesis
Satisfaction
Total knee arthroplasty
Journal
SICOT-J
ISSN: 2426-8887
Titre abrégé: SICOT J
Pays: France
ID NLM: 101675099
Informations de publication
Date de publication:
2021
2021
Historique:
received:
06
06
2021
accepted:
11
08
2021
entrez:
13
9
2021
pubmed:
14
9
2021
medline:
14
9
2021
Statut:
ppublish
Résumé
This study aimed to evaluate whether there are any differences in outcomes and complication rates between condylar constrained knee (CCK) and rotating hinge knee (RHK) prostheses used for the first revision of total knee arthroplasty (rTKA) after mechanical failure. Sixty-three consecutive non-septic revisions of posterior stabilized implants using 33 CCK and 30 RHK prostheses were included. Clinical evaluation and revision rate were compared between the two groups at two years minimum follow-up. The CCK group had significantly better clinical outcomes and satisfaction rates compared to patients with RHK (KSS-knee 70.5 versus 60.7 (p < 0.003) and KSS-function 74.9 versus 47.7 (p < 0.004) at 3.7 (2.0-9.4) years mean follow-up. Moreover, the clinical improvement was significantly higher for the CCK group concerning the KSS-Knee (+23.9 vs. +15.2 points, p = 0.03). The postoperative flexion was significantly better in the CCK group compared to the RHK group (115° vs. 103°, p = 0.01). The prosthesis-related complications and the re-revision rate were higher in the RHK group, especially due to patellofemoral complications and mechanical failures. CCK prostheses provided better clinical and functional outcomes and fewer complications than RHK prostheses when used for the first non-septic rTKA. CCK is a safe and effective implant for selected patients, while RHK should be used with caution as a salvage device for complex knee conditions, with particular attention to the balance of the extensor mechanism.
Identifiants
pubmed: 34515632
doi: 10.1051/sicotj/2021046
pii: sicotj210056
pmc: PMC8436950
doi:
Types de publication
Journal Article
Langues
eng
Pagination
45Informations de copyright
© The Authors, published by EDP Sciences, 2021.
Références
Knee Surg Sports Traumatol Arthrosc. 2004 Mar;12(2):140-3
pubmed: 12937894
J Bone Joint Surg Am. 2009 Jun;91(6):1440-7
pubmed: 19487523
J Arthroplasty. 2007 Sep;22(6 Suppl 2):100-5
pubmed: 17823026
Sarcoma. 2013;2013:489652
pubmed: 23476114
Int Orthop. 2014 Feb;38(2):429-35
pubmed: 24402557
Knee Surg Sports Traumatol Arthrosc. 2021 Feb;29(2):579-585
pubmed: 32279110
Eur J Orthop Surg Traumatol. 2020 Apr;30(3):529-535
pubmed: 31844984
Instr Course Lect. 1999;48:167-75
pubmed: 10098042
Int Orthop. 2013 Jul;37(7):1279-84
pubmed: 23700251
J Arthroplasty. 2014 Jan;29(1):127-31
pubmed: 23743510
J Arthroplasty. 2008 Dec;23(8):1204-11
pubmed: 18534467
Clin Orthop Relat Res. 1988 Nov;(236):72-81
pubmed: 3180588
Clin Orthop Relat Res. 2001 Nov;(392):292-9
pubmed: 11716398
J Arthroplasty. 2020 Sep;35(9):2550-2560
pubmed: 32482477
Knee Surg Sports Traumatol Arthrosc. 2012 Mar;20(3):517-23
pubmed: 21773833
J Arthroplasty. 2016 Dec;31(12):2672-2676
pubmed: 27546470
J Bone Joint Surg Am. 2007 Aug;89(8):1735-41
pubmed: 17671012
Clin Orthop Relat Res. 2012 Jan;470(1):20-32
pubmed: 22065240
Clin Orthop Relat Res. 2014 Jul;472(7):2197-200
pubmed: 24615421
Eur J Orthop Surg Traumatol. 2019 Oct;29(7):1511-1517
pubmed: 31129718
J Clin Orthop Trauma. 2018 Jan-Mar;9(1):29-33
pubmed: 29628680
PLoS One. 2019 Mar 25;14(3):e0214279
pubmed: 30908538
Clin Orthop Relat Res. 2001 Nov;(392):283-91
pubmed: 11716397
Clin Orthop Surg. 2010 Jun;2(2):112-20
pubmed: 20514269
Clin Orthop Relat Res. 2010 May;468(5):1221-8
pubmed: 20058112