Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
10 Sep 2021
10 Sep 2021
Historique:
entrez:
13
9
2021
pubmed:
14
9
2021
medline:
14
9
2021
Statut:
ppublish
Résumé
Scalable fabrication of monolayer graphene membrane on porous supports is key to realizing practical applications of atomically thin membranes, but it is technologically challenging. Here, we demonstrate a facile and versatile electrospinning approach to realize nanoporous graphene membranes on different polymeric supports with high porosity for efficient diffusion- and pressure-driven separations. The conductive graphene works as an excellent receptor for deposition of highly porous nanofibers during electrospinning, thereby enabling direct attachment of graphene to the support. A universal “binder” additive is shown to enhance adhesion between the graphene layer and polymeric supports, resulting in high graphene coverage on nanofibers made from different polymers. After defect sealing and oxygen plasma treatment, the resulting nanoporous membranes demonstrate record-high performances in dialysis and organic solvent nanofiltration, with a pure ethanol permeance of 156.8 liters m
Identifiants
pubmed: 34516873
doi: 10.1126/sciadv.abg6263
pmc: PMC8442935
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eabg6263Références
J Comput Chem. 2005 Dec;26(16):1701-18
pubmed: 16211538
Nat Commun. 2017 Feb 24;8:14560
pubmed: 28233778
Sci Adv. 2019 Jan 25;5(1):eaav1851
pubmed: 30746475
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17762-7
pubmed: 24127582
Nat Chem. 2018 Sep;10(9):961-967
pubmed: 30038326
Sci Adv. 2020 Apr 24;6(17):eaaz9184
pubmed: 32494655
Nano Lett. 2012 Jul 11;12(7):3602-8
pubmed: 22668008
Nature. 2016 Apr 28;532(7600):435-7
pubmed: 27121824
J Hazard Mater. 2012 Nov 30;241-242:154-63
pubmed: 23044198
Science. 2015 Jun 19;348(6241):1347-51
pubmed: 26089512
Nat Nanotechnol. 2017 Jun 6;12(6):509-522
pubmed: 28584292
Nano Lett. 2012 Jan 11;12(1):102-7
pubmed: 22128775
Nat Nanotechnol. 2015 May;10(5):459-64
pubmed: 25799521
Nat Commun. 2018 Jul 6;9(1):2632
pubmed: 29980683
Nano Lett. 2009 Dec;9(12):4019-24
pubmed: 19995080
Nat Nanotechnol. 2010 Aug;5(8):574-8
pubmed: 20562870
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9239-9244
pubmed: 28277647
Science. 2019 Jun 14;364(6445):1057-1062
pubmed: 31197007
ACS Nano. 2012 Nov 27;6(11):10130-8
pubmed: 23030691
Adv Mater. 2017 Sep;29(33):
pubmed: 28656721
Nat Mater. 2017 Dec;16(12):1198-1202
pubmed: 29170556
Chem Rev. 2014 Nov 12;114(21):10735-806
pubmed: 25333504
Nat Nanotechnol. 2012 Nov;7(11):728-32
pubmed: 23042491
ACS Nano. 2012 Jun 26;6(6):5360-5
pubmed: 22631604
Nano Lett. 2015 May 13;15(5):3254-60
pubmed: 25915708
Sci Adv. 2020 Oct 7;6(41):
pubmed: 33028518
ACS Nano. 2017 Oct 24;11(10):10042-10052
pubmed: 28994572
Nanoscale. 2015 Sep 28;7(36):14807-12
pubmed: 26289387
Science. 2014 Apr 18;344(6181):289-92
pubmed: 24744372
ACS Nano. 2014 Jan 28;8(1):841-9
pubmed: 24397398
Adv Mater. 2018 Dec;30(49):e1804977
pubmed: 30368941
Ther Apher Dial. 2011 Feb;15(1):66-74
pubmed: 21272255
Nano Lett. 2017 May 10;17(5):3081-3088
pubmed: 28434230
Adv Mater. 2016 Oct;28(39):8669-8674
pubmed: 27514930