ROV assessment of mesophotic fish and associated habitats across the continental shelf of the Amathole region.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 09 2021
Historique:
received: 10 04 2020
accepted: 17 08 2021
entrez: 14 9 2021
pubmed: 15 9 2021
medline: 15 9 2021
Statut: epublish

Résumé

Understanding how fish associate with habitats across marine landscapes is crucial to developing effective marine spatial planning (MSP) in an expanding and diversifying ocean economy. Globally, anthropogenic pressures impact the barely understood temperate mesophotic ecosystems and South Africa's remote Amathole shelf is no exception. The Kei and East London region encompass three coastal marine protected areas (MPAs), two of which were recently extended to the shelf-edge. The strong Agulhas current (exceeding 3 m/s), which runs along the narrow shelf exacerbates sampling challenges. For the first time, a remotely operated vehicle (ROV) surveyed fish and their associated habitats across the shelf. Results indicated fish assemblages differed between the two principle sampling areas, and across the shelf. The number of distinct fish assemblages was higher inshore and on the shelf-edge, relative to the mid-shelf. However, the mid-shelf had the highest species richness. Unique visuals of rare Rhinobatos ocellatus (Speckled guitarfish) and shoaling Polyprion americanus (wreckfish) were collected. Visual evidence of rhodolith beds, deep-water lace corals and critically endangered endemic seabreams were ecologically important observations. The ROV enabled in situ sampling without damaging sensitive habitats or extracting fish. This study provided information that supported the Amathole MPA expansions, which extended protection from the coast to beyond the shelf-edge and will guide their management. The data gathered provides baseline information for future benthopelagic fish and habitat monitoring in these new MPAs.

Identifiants

pubmed: 34518584
doi: 10.1038/s41598-021-97369-2
pii: 10.1038/s41598-021-97369-2
pmc: PMC8437978
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

18171

Informations de copyright

© 2021. The Author(s).

Références

Milligan, R. J., Spence, G., Roberts, J. M. & Bailey, D. M. Fish communities associated with cold-water corals vary with depth and substratum type. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 43–54 (2016).
doi: 10.1016/j.dsr.2016.04.011
Anderson, T. J., Syms, C., Roberts, D. A. & Howard, D. F. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. J. Exp. Mar. Bio. Ecol. 379, 34–42 (2009).
doi: 10.1016/j.jembe.2009.07.033
Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).
doi: 10.1016/j.marpol.2010.10.006
Hinderstein, L. M. et al. Mesophotic coral ecosystems: Characterization, ecology, and management. Coral Reefs 29, 247–251 (2010).
doi: 10.1007/s00338-010-0614-5
Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 1–13 (2018).
doi: 10.1038/s41598-018-23067-1
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
doi: 10.3389/fmars.2017.00158
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361(6399), 281–284 (2018).
pubmed: 30026226 doi: 10.1126/science.aaq1614
Cerrano, C. et al. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).
doi: 10.1080/24750263.2019.1677790
Williams, J., Jordan, A., Harasti, D., Davies, P. & Ingleton, T. Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE 14, e0206778 (2019).
pubmed: 30875385 pmcid: 6420037 doi: 10.1371/journal.pone.0206778
Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8 (2009).
doi: 10.1016/j.jembe.2009.05.009
Armstrong, R. A., Pizarro, O. & Roman, C. Underwater robotic technology for imaging mesophotic coral ecosystems. in Mesophotic Coral Ecosystems. 973–988. (Springer, 2019).
Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).
doi: 10.1139/F08-032
Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: From acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54, 1–72 (2016).
Stevens, T. & Connolly, R. M. Local-scale mapping of benthic habitats to assess representation in a marine protected area. Mar. Freshw. Res. 56, 111–123 (2005).
doi: 10.1071/MF04233
Bernard, A. T. et al. New possibilities for research on reef fish across the continental shelf of South Africa. S. Afr. J. Sci. 110, 1–5. https://doi.org/10.1590/sajs.2014/a0079 (2014).
doi: 10.1590/sajs.2014/a0079
Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).
doi: 10.1016/j.marpol.2017.05.016
South African National Biodiversity Institute. South Africa Announces New Marine Protected Area Network. https://www.sanbi.org/media/south-africa-announces-new-marine-protected-area-network/ . (2018).
der Bank, V., Harris, L., Atkinson, L., Kirkman, S., & Karenyi, N. Marine Realm in South African National Biodiversity Assessment 2018 Technical Report. Vol. 4 (South African National Biodiversity Institute, 2019).
Sink, K. The marine protected areas debate: Implications for the proposed Phakisa marine protected areas network. S. Afr. J. Sci. 112, 9–10 (2016).
doi: 10.17159/sajs.2016/a0179
Turpie, J. K., Beckley, L. E. & Katua, S. M. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol. Conserv. 92, 59–72 (2000).
doi: 10.1016/S0006-3207(99)00063-4
Götz, A. & Phillips, M. SAEON Elwandle Applies Expertise to Marine Protected Area Management in Amathole. http://www.saeon.ac.za/enewsletter/archives/2016/august2016/doc03 (2019).
DEA (Department of Environmental Affairs). Notice Declaring the Amathole Offshore Marine Protected Area Under Section 22A of the National Environmental Management: Protected Areas Act, 2003 (Act No.57 of 2003). Government Gazette, Republic of South Africa (2016).
Green, A. N. et al. Relict and contemporary influences on the postglacial geomorphology and evolution of a current swept shelf: The Eastern Cape Coast, South Africa. Mar. Geol. 427, 106230 (2020).
doi: 10.1016/j.margeo.2020.106230
Parker, D., Winker, H., Attwood, C. & Kerwath, S. Dark times for dageraad Chrysoblephus cristiceps: Evidence for stock collapse. Afr. J. Mar. Sci. 38, 341–349. https://doi.org/10.2989/1814232X.2016.1200142 (2016).
doi: 10.2989/1814232X.2016.1200142
Kerwath, S. et al. Tracking the decline of the world’s largest seabream against policy adjustments. Mar. Ecol. Prog. Ser. 610, 163–173. https://doi.org/10.3354/meps12853 (2019).
doi: 10.3354/meps12853
African Coelacanth Ecosystem Programme Project. African Coelacanth Ecosystem Programme Project Overviews 2017/2018. (2018).
Donovan, B. A Retrospective Assessment of the Port Alfred Linefishery with Respect to the Changes in the South African Fisheries Management Environment (Rhodes University, 2010).
International Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threatened Species (IUCN Global Species Programme Red List Unit, 2017).
Götz, A., Kerwath, S. E., Attwood, C. G. & Sauer, W. H. H. Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar. Ecol. Prog. Ser. 362, 245–259 (2008).
doi: 10.3354/meps07410
McCord, M. & Zweig, T. Fisheries: Facts and Trends. http://awsassets.wwf.org.za/downloads/wwf_a4_fish_facts_report_lr.pdf (2011).
Southern African Marine Linefish Species Profiles (South African Association for Marine Biological Research, 2013).
Smith, J. L. B. Smiths’ Sea Fishes. https://doi.org/10.1007/978-3-642-82858-4 (Springer, 1986).
Compagno, L. J. V., Ebert, D. A. & Smale, M. J. Guide to the Sharks and Rays of Southern Africa (Struik, 1989).
Peres, M. B. & Klippel, S. Reproductive biology of Southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fish. 68, 163–173 (2003).
doi: 10.1023/B:EBFI.0000003845.43700.29
Baillon, S., Hamel, J.-F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).
doi: 10.1890/120022
Sink, K. J., Boshoff, W., Samaai, T., Timm, P. G. & Kerwath, S. E. Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay: Coelacanth research. S. Afr. J. Sci. 102, 466–474 (2006).
Heemstra, P. C. & Heemstra, E. Coastal Fishes of Southern Africa (National Inquiry Services Centre, 2004).
Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fish. 102, 479–497. https://doi.org/10.1007/s10641-019-0845-4 (2019).
doi: 10.1007/s10641-019-0845-4
Booth, A. J. & Buxton, C. D. The biology of the panga, Pterogymnus laniarius (Teleostei: Sparidae), on the Agulhas Bank, South Africa. Environ. Biol. Fish. 49, 207–226 (1997).
doi: 10.1023/A:1007362700687
Turner, J. A., Babcock, R. C., Hovey, R. & Kendrick, G. A. Deep thinking: A systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74, 2309–2320. https://doi.org/10.1093/icesjms/fsx085 (2017).
doi: 10.1093/icesjms/fsx085
Heyns, E., Bernard, A. T., Richoux, N. & Götz, A. Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area. Mar. Biol. 163, 39. https://doi.org/10.1007/s00227-016-2816-z (2016).
doi: 10.1007/s00227-016-2816-z
Bridge, T. C. L. et al. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153 (2011).
doi: 10.1007/s00338-010-0677-3
Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).
doi: 10.1093/icesjms/22.1.33
Fabricius, K. E., Logan, M., Weeks, S. & Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84, 191–200 (2014).
pubmed: 24863415 doi: 10.1016/j.marpolbul.2014.05.012
Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).
doi: 10.1046/j.1529-8817.2001.00195.x
Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Bio. Ecol. 150, 163–182 (1991).
doi: 10.1016/0022-0981(91)90066-6
Tait, R. V. & Dipper, F. Elements of marine ecology (Butterworth-Heinemann, 1998).
Williams, A. & Bax, N. J. Delineating fish-habitat associations for spatially based management: An example from the south-eastern Australian continental shelf. Mar. Freshw. Res. 52, 513 (2001).
doi: 10.1071/MF00017
Pearson, R. & Stevens, T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar. Ecol. Prog. Ser. 532, 185–196 (2015).
doi: 10.3354/meps11351
MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).
doi: 10.3354/meps11953
Fukunaga, A., Kosaki, R. K. & Wagner, D. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36, 785–790 (2017).
doi: 10.1007/s00338-017-1569-6
Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).
pubmed: 28883506 pmcid: 5589835 doi: 10.1038/s41598-017-11452-1
Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).
pubmed: 10652559 doi: 10.1016/S0169-5347(99)01767-X
Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: What have we learned so far?. Am. Nat. 163, E1-23 (2004).
pubmed: 15026983 doi: 10.1086/382056
Makwela, M. S. et al. Notes on a remotely operated vehicle survey to describe reef ichthyofauna and habitats—Agulhas Bank, South Africa. Bothalia 46, 1–7 (2016).
doi: 10.4102/abc.v46i1.2108
Quantum GIS Development Team. Quantum GIS Geographic Information System. (2002).
Kleczkowski, M., Babcock, R. C. & Clapin, G. Density and size of reef fishes in and around a temperate marine reserve. Mar. Freshw. Res. 59, 165 (2008).
doi: 10.1071/MF07093
Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).
pubmed: 26509918 pmcid: 4625050 doi: 10.1371/journal.pone.0141039
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ . (R Foundation for Statistical Computing, 2020).
Charrad, M., Ghazzali, N., Boiteau, V. & Maintainer, A. N. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1 (2014).
doi: 10.18637/jss.v061.i06
Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
De’ath, G. Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83, 1105 (2002).
Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
doi: 10.1007/978-0-387-87458-6
South African National Biodiversity Institute. https://www.sanbi.org/ . (2021).

Auteurs

Rio E Button (RE)

Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa. riobutton@gmail.com.

Denham Parker (D)

Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa.
Department of Forestry, Fisheries and the Environment, Cape Town, 8000, South Africa.

Vivienne Coetzee (V)

Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa.

Toufiek Samaai (T)

Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa.
Department of Forestry, Fisheries and the Environment, Cape Town, 8000, South Africa.
Department of Biodiversity and Conservation, University of the Western Cape, Bellville, Cape Town, South Africa.

Ryan M Palmer (RM)

South African Institute for Aquatic Biodiversity, Somerset Street, Makhanda, 6139, South Africa.

Kerry Sink (K)

South African National Biodiversity Institute, Rhodes Drive, Newlands, 7700, South Africa.
Institute for Coastal and Marine Research, Nelson Mandela University, Summerstrand, Gqeberha, 6001, South Africa.

Sven E Kerwath (SE)

Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa.
Department of Forestry, Fisheries and the Environment, Cape Town, 8000, South Africa.

Classifications MeSH