Green synthesis of carbamates and amides via Cu@Sal-Cs catalyzed C-O and C-N oxidative coupling accelerated by microwave irradiation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 09 2021
Historique:
received: 22 03 2021
accepted: 19 08 2021
entrez: 14 9 2021
pubmed: 15 9 2021
medline: 15 9 2021
Statut: epublish

Résumé

A new nano-scale Cu@salicylaldehyde-modified-chitosan (Cu@Sal-CS) was synthesized through a green, eco-friendly and cost-effective technique. The prepared catalyst was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), and inductively coupled plasma (ICP) analysis. The synthesized Cu@Sal-CS catalyst indicated its performance in the C-O and C-N oxidative coupling using the reaction of 1,3-dicarbonyl derivatives/2- substituted phenols with amides for the preparation of carbamates, as well as in the reaction of aldehydes and various amines in the synthesis of amides. The significant features of this work are operational simplicity of catalyst synthesis, in situ and new modification method, use of an efficient, recoverable, frequently reused and stable catalyst without any loss of catalytic activity, and high yields of the products in short times.

Identifiants

pubmed: 34518604
doi: 10.1038/s41598-021-97554-3
pii: 10.1038/s41598-021-97554-3
pmc: PMC8437951
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

18105

Informations de copyright

© 2021. The Author(s).

Références

Kumar, G. S., Maheswari, C. U., Kumar, R. A., Kantam, M. L. & Reddy, K. R. Copper-catalyzed oxidative C–O coupling by direct C–H bond activation of formamides: synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates. Angew. Chem. Int. Ed. 50, 11748–11751 (2011).
doi: 10.1002/anie.201105020
Dhakshinamoorthy, A., Asiri, A. M. & Garcia, H. Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem. Soc. Rev. 44, 1922–1947 (2015).
pubmed: 25608717 doi: 10.1039/C4CS00254G
Azizi, K., Karimi, M. & Heydari, A. Oxidative coupling of formamides with β-dicarbonyl compounds and the synthesis of 2-aminobenzothiazole using Cu (II)-functionalized Fe
doi: 10.1016/j.tetlet.2014.12.110
Verma, S., Baig, R. N., Nadagouda, M. N. & Varma, R. S. Oxidative CH activation of amines using protuberant lychee-like goethite. Sci. Rep. 8, 1–7 (2018).
doi: 10.1038/s41598-018-20246-y
Vessally, E., Mohammadi, R., Hosseinian, A., Edjlali, L. & Babazadeh, M. Three component coupling of amines, alkyl halides and carbon dioxide: an environmentally benign access to carbamate esters (urethanes). J. CO2 Util. 24, 361–368 (2018).
Chaturvedi, D. Perspectives on the synthesis of organic carbamates. Tetrahedron 1, 15–45 (2012).
doi: 10.1016/j.tet.2011.10.001
Goto, T. et al. The high throughput analysis of N-methyl carbamate pesticides in fruits and vegetables by liquid chromatography electrospray ionization tandem mass spectrometry using a short column. Anal. Chim. Acta 555, 225–232 (2006).
doi: 10.1016/j.aca.2005.09.055
Ray, S. & Chaturvedi, D. Application of organic carbamates in drug design. Part 1: Anti-cancer agents-recent reports. Drugs Fut 29, 343–357 (2004).
doi: 10.1358/dof.2004.029.04.787236
Dangerfield, E. M., Timmer, M. S. & Stocker, B. L. Total synthesis without protecting groups: pyrrolidines and cyclic carbamates. Org. Lett. 11, 535–538 (2008).
doi: 10.1021/ol802484y
Greene, T. & Wuts, P. (Wiley, Hoboken, 2002).
Mayer, J. P., Lewis, G. S., Curtis, M. J. & Zhang, J. Solid phase synthesis of quinazolinones. Tetrahedron Lett. 38, 8445–8448 (1997).
doi: 10.1016/S0040-4039(97)10276-3
Buchstaller, H.-P. Solid phase synthesis of oxazolidinones via a novel cyclisation/cleavage reaction. Tetrahedron 54, 3465–3470 (1998).
doi: 10.1016/S0040-4020(98)00079-9
Phan, N. T., Nguyen, T. T. & Vu, P. H. A copper metal-organic framework as an efficient and recyclable catalyst for the oxidative cross-dehydrogenative coupling of phenols and formamides. ChemCatChem 5, 3068–3077 (2013).
doi: 10.1002/cctc.201300400
Prasad, K. R., Suresh, P., Ravikumar, B., Reddy, N. V. & Reddy, K. R. Synthesis of functionalized carbamates and quinones via sequential oxidation of salicylaldehydes using TBHP as the oxidant. Tetrahedron Lett. 55, 6307–6310 (2014).
doi: 10.1016/j.tetlet.2014.09.080
Ali, W. et al. Copper-catalyzed cross dehydrogenative coupling of N, N-disubstituted formamides and phenols: A direct access to carbamates. Adv. Synth. Catal. 357, 515–522 (2015).
doi: 10.1002/adsc.201400659
Yoshimura, A., Luedtke, M. W. & Zhdankin, V. V. (Tosylimino) phenyl-λ3-iodane as a reagent for the synthesis of methyl carbamates via hofmann rearrangement of aromatic and aliphatic carboxamides. J. Org. Chem. 77, 2087–2091 (2012).
pubmed: 22304475 doi: 10.1021/jo300007c
Lebel, H. & Leogane, O. Curtius rearrangement of aromatic carboxylic acids to access protected anilines and aromatic ureas. Org. Lett. 8, 5717–5720 (2006).
pubmed: 17134255 doi: 10.1021/ol0622920
Sawada, D., Sasayama, S., Takahashi, H. & Ikegami, S. A new and facile synthesis of carbamate-and urea-linked glycoconjugate using modified Curtius rearrangement. Tetrahedron Lett. 47, 7219–7223 (2006).
doi: 10.1016/j.tetlet.2006.07.139
Chaturvedi, D., Kumar, A. & Ray, S. A high yielding one-pot, novel synthesis of carbamate esters from alcohols using Mitsunobu’s reagent. Tetrahedron Lett. 44, 7637–7639 (2003).
doi: 10.1016/j.tetlet.2003.08.018
Satchell, D. & Satchell, R. Acylation by ketens and isocyanates. A mechanistic comparison. Chem. Soc. Rev. 4, 231–250 (1975).
doi: 10.1039/cs9750400231
Sauriat-Dorizon, H. & Guibé, F. Enantioconservative synthesis and ring closing metathesis of disubstituted dialkenic amides. Tetrahedron Lett. 39, 6711–6714 (1998).
doi: 10.1016/S0040-4039(98)01432-4
Nowick, J. S., Powell, N. A., Nguyen, T. M. & Noronha, G. An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates. J. Org. Chem. 57, 7364–7366 (1992).
doi: 10.1021/jo00052a069
Barve, B. D. et al. Copper-catalyzed oxidative coupling of formamides with salicylaldehydes: Synthesis of carbamates in the presence of a sensitive aldehyde group. J. Org. Chem. 79, 3206–3214 (2014).
pubmed: 24588581 doi: 10.1021/jo402798k
Barve, B. D. et al. Synthesis of carbamates by direct C–H bond activation of formamides. Eur. J. Org. Chem. 2012, 6760–6766 (2012).
doi: 10.1002/ejoc.201201160
Panahi, L., Naimi-Jamal, M. R., Mokhtari, J. & Morsali, A. Mechanochemically synthesized nanoporous metal-organic framework Cu2 (BDC) 2 (DABCO): An efficient heterogeneous catalyst for preparation of carbamates. Microporous Mesoporous Mater. 244, 208–217 (2017).
doi: 10.1016/j.micromeso.2016.10.031
Leow, D. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org. Lett. 16, 5812–5815 (2014).
pubmed: 25350690 doi: 10.1021/ol5029354
Azizi, K., Karimi, M., Nikbakht, F. & Heydari, A. Direct oxidative amidation of benzyl alcohols using EDTA@ Cu (II) functionalized superparamagnetic nanoparticles. Appl. Catal. A 482, 336–343 (2014).
doi: 10.1016/j.apcata.2014.06.009
Bahsis, L. et al. Cellulose-copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3+ 2] cycloaddition reaction in water. Int. J. Biol. Macromol. 119, 849–856 (2018).
pubmed: 30081123 doi: 10.1016/j.ijbiomac.2018.07.200
Drageset, A. & Bjørsvik, H. R. Synthesis of amides from alcohols and amines through a domino oxidative amidation and telescoped transamidation process. Eur. J. Org. Chem. 2018, 4436–4445 (2018).
doi: 10.1002/ejoc.201800378
Li, G., Ji, C.-L., Hong, X. & Szostak, M. Highly chemoselective, transition-metal-free transamidation of unactivated amides and direct amidation of alkyl esters by N–C/O–C Cleavage. J. Am. Chem. Soc. (2019).
Li, G. et al. Copper (I)-catalyzed dehydrogenative amidation of arenes using air as the oxidant. Adv. Synth. Catal. 357, 1311–1315 (2015).
doi: 10.1002/adsc.201400883
Goswami, M. & Das, A. M. Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for CN coupling reactions under mild conditions. Carbohydr. Polym. 195, 189–198 (2018).
pubmed: 29804968 doi: 10.1016/j.carbpol.2018.04.033
Kumari, S. & Pathak, D. D. Synthesis and development of Chitosan anchored copper (II) Schiff base complexes as heterogeneous catalysts for N-arylation of amines. Tetrahedron Lett. 56, 4135–4142 (2015).
doi: 10.1016/j.tetlet.2015.05.049
Gawande, M. B. et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016).
pubmed: 26935812 doi: 10.1021/acs.chemrev.5b00482
Chtchigrovsky, M. et al. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+ 2] Huisgen cycloaddition. Angew. Chem. Int. Ed. 48, 5916–5920 (2009).
doi: 10.1002/anie.200901309
Kucherov, A., Kramareva, N., Finashina, E., Koklin, A. & Kustov, L. Heterogenized redox catalysts on the basis of the chitosan matrix: 1. Copper complexes. J. Mol. Catal. A Chemical 198, 377–389 (2003).
doi: 10.1016/S1381-1169(03)00002-5
Hassan, M. A., Omer, A. M., Abbas, E., Baset, W. M. & Tamer, T. M. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci. Rep. 8, 1–14 (2018).
doi: 10.1038/s41598-018-29650-w
Al-Azmi, A. & Keshipour, S. Cross-linked chitosan aerogel modified with Pd (II)/phthalocyanine: Synthesis, characterization, and catalytic application. Sci. Rep. 9, 1–10 (2019).
doi: 10.1038/s41598-019-50021-6
Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: a synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 1–12 (2019).
doi: 10.1038/s41598-019-53765-3
Vahid, N. F., Marvi, M. R., Naimi-Jamal, M. R., Naghib, S. M. & Ghaffarinejad, A. X-Fe2O4-buckypaper-chitosan nanocomposites for nonenzymatic electrochemical glucose biosensing. Anal. Bioanal. Electrochem 11, 930–942 (2019).
Koyama, Y. & Taniguchi, A. Studies on chitin X. Homogeneous cross-linking of chitosan for enhanced cupric ion adsorption. J. Appl. Polym. Sci. 31, 1951–1954 (1986).
doi: 10.1002/app.1986.070310636
Kramareva, N., Finashina, E., Kucherov, A. & Kustov, L. Copper complexes stabilized by chitosans: Peculiarities of the structure, redox, and catalytic properties. Kinet. Catal. 44, 793–800 (2003).
doi: 10.1023/B:KICA.0000009056.74699.b8
Movahed, S. K., Piraman, Z. & Dabiri, M. A nitrogen-doped porous carbon derived from copper phthalocyanines on/in ZIF-8 as an efficient photocatalyst for the degradation of dyes and the CH activation of formamides. J. Photochem. Photobiol., A 351, 208–224 (2018).
doi: 10.1016/j.jphotochem.2017.10.026
Pandey, G., Koley, S., Talukdar, R. & Sahani, P. K. Cross-dehydrogenating coupling of aldehydes with amines/R-OTBS ethers by visible-light photoredox catalysis: Synthesis of amides, esters, and ureas. Org. Lett. 20, 5861–5865 (2018).
pubmed: 30192550 doi: 10.1021/acs.orglett.8b02537
Yang, S. et al. Copper-catalyzed dehydrogenative reaction: Synthesis of amide from aldehydes and aminopyridine. Tetrahedron 69, 6431–6435 (2013).
doi: 10.1016/j.tet.2013.05.072
Wang, J., Li, J., Xu, F. & Shen, Q. Anionic bridged bis (amidinate) lithium lanthanide complexes: efficient bimetallic catalysts for mild amidation of aldehydes with amines. Adv. Synth. Catal. 351, 1363–1370 (2009).
doi: 10.1002/adsc.200800697
Yazdani, E. et al. A magnetically recoverable copper–salen complex as a nano-catalytic system for amine protection via acetylation using thioacetic acid. Res. Chem. Intermed. 45, 1775–1793 (2019).
doi: 10.1007/s11164-018-3702-8
Sharma, R., Dutta, S. & Sharma, S. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: a novel and magnetically retrievable catalyst for the synthesis of carbamates via C-H activation of formamides. Dalton Trans. 44, 1303–1316 (2015).
pubmed: 25417959 doi: 10.1039/C4DT03236E
Inagawa, H., Uchida, S., Yamaguchi, E. & Itoh, A. Metal‐free oxidative amidation of aromatic aldehydes using an anthraquinone‐based organophotocatalyst. Asian J. Org. Chem. (2019).

Auteurs

Mahboubeh Asadi (M)

Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran.

M Reza Naimi-Jamal (MR)

Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran. naimi@iust.ac.ir.

Leila Panahi (L)

Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran.

Classifications MeSH