Dynamic changes of scleral spur length in different accommodation stimuli states.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 09 2021
Historique:
received: 19 04 2021
accepted: 30 08 2021
entrez: 14 9 2021
pubmed: 15 9 2021
medline: 15 9 2021
Statut: epublish

Résumé

This study aimed to evaluate the scleral spur length (SSL) in response to different accommodation stimuli states, as well as the correlation with Schlemm's canal (SC) and trabecular meshwork (TM). 74 children were recruited for this study. The 0D, - 4D, and - 8.0 D accommodation stimuli state was achieved by looking at a variable distance optotype. The ciliary muscle (CM), scleral spur (SS), SC, and TM were imaged by swept-source optical coherence tomography. The SSL (Method III) increased significantly from 221.56 ± 30.74 μm at base state to 234.99 ± 30.11 μm at - 4D accommodation stimuli state (p = 0.028) and increased to 250.09 ± 29.87 μm at - 8D accommodation stimuli state (p = 0.011). Method III had the largest areas under receiver operating characteristic (ROC) curves (0.798, 95% CI 0.721-0.875). Moreover, CM 1, SC, and trabecular meshwork length (TML) were significantly correlated with SSL (Method III) (p < 0.05). These findings suggest that the contractile ability and compliance of the SS play an important role in maintaining the morphology of the SC. Moreover, the force of accommodation regulates the SC size by increasing the length of SS.

Identifiants

pubmed: 34518627
doi: 10.1038/s41598-021-97754-x
pii: 10.1038/s41598-021-97754-x
pmc: PMC8438021
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

18176

Informations de copyright

© 2021. The Author(s).

Références

Graefes Arch Clin Exp Ophthalmol. 2020 Jun;258(6):1253-1260
pubmed: 32146558
J Cataract Refract Surg. 2004 Jul;30(7):1435-44
pubmed: 15210220
Br J Ophthalmol. 1996 May;80(5):389-93
pubmed: 8695555
Invest Ophthalmol Vis Sci. 2014 May 15;55(6):3727-36
pubmed: 24833737
JAMA Ophthalmol. 2016 Sep 1;134(9):976-81
pubmed: 27347646
Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6882-9
pubmed: 20671285
Br J Ophthalmol. 2010 Mar;94(3):332-5
pubmed: 19822912
J Ophthalmol. 2020 Dec 18;2020:6613066
pubmed: 33489336
Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1633-44
pubmed: 7601644
Arch Ophthalmol. 1963 Jun;69:783-801
pubmed: 13949877
Graefes Arch Clin Exp Ophthalmol. 2017 Jul;255(7):1385-1394
pubmed: 28424868
J Biol Chem. 2003 May 9;278(19):16587-94
pubmed: 12606541
Invest Ophthalmol Vis Sci. 1980 Dec;19(12):1490-7
pubmed: 7440103
Exp Eye Res. 1992 Jun;54(6):879-83
pubmed: 1521580
Exp Cell Res. 2006 Feb 1;312(3):205-14
pubmed: 16325810
Int Ophthalmol. 2020 Sep;40(9):2247-2255
pubmed: 32388672
Ophthalmic Physiol Opt. 2015 Sep;35(5):465-75
pubmed: 26303444
Ophthalmic Physiol Opt. 1989 Oct;9(4):424-30
pubmed: 2631011
Invest Ophthalmol Vis Sci. 2015 Feb 10;56(3):1638-48
pubmed: 25670488
Exp Eye Res. 1989 Oct;49(4):645-63
pubmed: 2806429
Surv Ophthalmol. 2007 Nov;52 Suppl 2:S101-4
pubmed: 17998032
Invest Ophthalmol Vis Sci. 2013 Jan 28;54(1):830-5
pubmed: 23299483
Graefes Arch Clin Exp Ophthalmol. 2002 Nov;240(11):906-12
pubmed: 12486512
Exp Eye Res. 2006 Apr;82(4):545-57
pubmed: 16386733
Exp Eye Res. 1992 Apr;54(4):531-43
pubmed: 1623940
Eye (Lond). 2020 Feb;34(2):374-382
pubmed: 31399701
Am J Optom Arch Am Acad Optom. 1956 Jan;33(1):3-14
pubmed: 13283035
J Glaucoma. 2012 Jan;21(1):45-8
pubmed: 21173703
Acta Ophthalmol (Copenh). 1974;52(5):634-46
pubmed: 4138241
Exp Eye Res. 2015 Jan;130:87-96
pubmed: 25450060
Br J Ophthalmol. 1978 May;62(5):302-13
pubmed: 656356
Invest Ophthalmol. 1976 Oct;15(10):793-807
pubmed: 824222
Exp Eye Res. 2009 Apr;88(4):648-55
pubmed: 19239914
Prog Retin Eye Res. 1999 Jan;18(1):91-119
pubmed: 9920500
Optom Vis Sci. 2009 Mar;86(3):208-15
pubmed: 19165126
Ophthalmic Physiol Opt. 2018 May;38(3):266-272
pubmed: 29691920
J Korean Med Sci. 2019 Jan 21;34(4):e32
pubmed: 30686953

Auteurs

Liugui Chen (L)

Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, Hubei Province, China.

Wei Jin (W)

Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, Hubei Province, China.

Xinlei Hao (X)

Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, Hubei Province, China.

Xuejie Li (X)

Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, Hubei Province, China.

Yiqiao Xing (Y)

Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, Hubei Province, China. Yiqiao_xing57@whu.edu.cn.

Classifications MeSH