Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus.
Journal
Nature reviews. Endocrinology
ISSN: 1759-5037
Titre abrégé: Nat Rev Endocrinol
Pays: England
ID NLM: 101500078
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
accepted:
06
08
2021
pubmed:
15
9
2021
medline:
29
12
2021
entrez:
14
9
2021
Statut:
ppublish
Résumé
Fracture risk is increased in patients with type 2 diabetes mellitus (T2DM). In addition, these patients sustain fractures despite having higher levels of areal bone mineral density, as measured by dual-energy X-ray absorptiometry, than individuals without T2DM. Thus, additional factors such as alterations in bone quality could have important roles in mediating skeletal fragility in patients with T2DM. Although the pathogenesis of increased fracture risk in T2DM is multifactorial, impairments in bone material properties and increases in cortical porosity have emerged as two key skeletal abnormalities that contribute to skeletal fragility in patients with T2DM. In addition, indices of bone formation are uniformly reduced in patients with T2DM, with evidence from mouse studies published over the past few years linking this abnormality to accelerated skeletal ageing, specifically cellular senescence. In this Review, we highlight the latest advances in our understanding of the mechanisms of skeletal fragility in patients with T2DM and suggest potential novel therapeutic approaches to address this problem.
Identifiants
pubmed: 34518671
doi: 10.1038/s41574-021-00555-5
pii: 10.1038/s41574-021-00555-5
pmc: PMC8605611
mid: NIHMS1755234
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
685-697Subventions
Organisme : NIA NIH HHS
ID : P01 AG004875
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG065868
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR068275
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG063707
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR027065
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG062413
Pays : United States
Organisme : NIAMS NIH HHS
ID : K01 AR070241
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG063707
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. Springer Nature Limited.
Références
Zimmet, P. Z. Diabetes and its drivers: the largest epidemic in human history? Clin. Diabetes Endocrinol. 3, 1 (2017).
pubmed: 28702255
pmcid: 5471716
doi: 10.1186/s40842-016-0039-3
Napoli, N. et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13, 208–219 (2017). A comprehensive review of the mechanisms of bone fragility in T2DM; the current review aims largely to update new information since this publication.
pubmed: 27658727
doi: 10.1038/nrendo.2016.153
Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos. Int. 18, 427–444 (2007).
pubmed: 17068657
doi: 10.1007/s00198-006-0253-4
Schwartz, A. V. et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305, 2184–2192 (2011). A key paper demonstrating that patients with diabetes mellitus experience fractures at higher levels of BMD than individuals without diabetes mellitus.
pubmed: 21632482
pmcid: 3287389
doi: 10.1001/jama.2011.715
Koromani, F. et al. Vertebral fractures in individuals with type 2 diabetes: more than skeletal complications alone. Diabetes Care 43, 137–144 (2020).
pubmed: 31658976
doi: 10.2337/dc19-0925
Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).
pubmed: 18292978
pmcid: 2267485
doi: 10.1007/s00198-007-0543-5
Ioacara, S. et al. Improvements in life expectancy in adult type 2 diabetes patients in the last six decades. Diabetes Res. Clin. Pract. 92, 400–404 (2011).
pubmed: 21489648
doi: 10.1016/j.diabres.2011.03.022
Melton, L. J. 3rd, Leibson, C. L., Achenbach, S. J., Therneau, T. M. & Khosla, S. Fracture risk in type 2 diabetes: update of a population-based study. J. Bone Miner. Res. 23, 1334–1342 (2008).
pubmed: 18348689
pmcid: 2574704
doi: 10.1359/jbmr.080323
Vilaca, T. et al. The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: a systematic review and meta-analysis update. Bone 137, 115457 (2020).
pubmed: 32480023
doi: 10.1016/j.bone.2020.115457
Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).
pubmed: 17575306
doi: 10.1093/aje/kwm106
Fan, Y., Wei, F., Lang, Y. & Liu, Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos. Int 27, 219–228 (2016).
pubmed: 26264604
doi: 10.1007/s00198-015-3279-7
Park, H. Y., Han, K., Kim, Y., Kim, Y. H. & Sur, Y. J. The risk of hip fractures in individuals over 50 years old with prediabetes and type 2 diabetes – a longitudinal nationwide population-based study. Bone 142, 115691 (2020).
pubmed: 33069920
doi: 10.1016/j.bone.2020.115691
Wang, H., Ba, Y., Xing, Q. & Du, J. L. Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open 9, e024067 (2019).
pubmed: 30610024
pmcid: 6326306
doi: 10.1136/bmjopen-2018-024067
Vilaca, T., Walsh, J. & Eastell, R. Discordant pattern of peripheral fractures in diabetes: a meta-analysis on the risk of wrist and ankle fractures. Osteoporos. Int. 30, 135–143 (2019).
pubmed: 30306223
doi: 10.1007/s00198-018-4717-0
Adami, G. et al. Risk of fragility fractures in obesity and diabetes: a retrospective analysis on a nation-wide cohort. Osteoporos. Int. 31, 2113–2122 (2020).
pubmed: 32613408
doi: 10.1007/s00198-020-05519-5
Napoli, N. et al. Vertebral fracture risk in diabetic elderly men: the MrOS study. J. Bone Miner. Res. 33, 63–69 (2018).
pubmed: 28861910
doi: 10.1002/jbmr.3287
Oei, L. et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 36, 1619–1628 (2013).
pubmed: 23315602
pmcid: 3661786
doi: 10.2337/dc12-1188
Schneider, A. L. et al. Diabetes and risk of fracture-related hospitalization: the Atherosclerosis Risk in Communities study. Diabetes Care 36, 1153–1158 (2013).
pubmed: 23248194
pmcid: 3631877
doi: 10.2337/dc12-1168
Li, C. I. et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan diabetes cohort study. J. Bone Miner. Res. 30, 1338–1346 (2015).
pubmed: 25598134
doi: 10.1002/jbmr.2462
Conway, B. N., Long, D. M., Figaro, M. K. & May, M. E. Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res. Clin. Pract. 115, 47–53 (2016).
pubmed: 27242122
pmcid: 4930877
doi: 10.1016/j.diabres.2016.03.009
Ntouva, A. et al. Hypoglycaemia is associated with increased risk of fractures in patients with type 2 diabetes mellitus: a cohort study. Eur. J. Endocrinol. 180, 51–58 (2019).
pubmed: 30400051
doi: 10.1530/EJE-18-0458
Hung, Y. C. et al. Severe hypoglycemia and hip fracture in patients with type 2 diabetes: a nationwide population-based cohort study. Osteoporos. Int. 28, 2053–2060 (2017).
pubmed: 28374044
doi: 10.1007/s00198-017-4021-4
Johnston, S. S., Conner, C., Aagren, M., Ruiz, K. & Bouchard, J. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes. Metab. 14, 634–643 (2012).
pubmed: 22335246
doi: 10.1111/j.1463-1326.2012.01583.x
Komorita, Y. et al. Both hypo- and hyperglycaemia are associated with increased fracture risk in Japanese people with type 2 diabetes: the Fukuoka Diabetes Registry. Diabet. Med. 37, 838–847 (2020). An observational study demonstrating that recurrent hypoglycaemia as well as poorly controlled T2DM are associated with an increase in fracture risk.
pubmed: 31556147
doi: 10.1111/dme.14142
Lui, D. T. W. et al. HbA1c variability, in addition to mean HbA1c, predicts incident hip fractures in Chinese people with type 2 diabetes. Osteoporos. Int. 31, 1955–1964 (2020).
pubmed: 32385660
doi: 10.1007/s00198-020-05395-z
Bonds, D. E. et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational study. J. Clin. Endocrinol. Metab. 91, 3404–3410 (2006).
pubmed: 16804043
doi: 10.1210/jc.2006-0614
Ma, L. et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur. J. Epidemiol. 27, 319–332 (2012).
pubmed: 22451239
pmcid: 3374119
doi: 10.1007/s10654-012-9674-x
Starup-Linde, J. & Vestergaard, P. Biochemical bone turnover markers in diabetes mellitus – a systematic review. Bone 82, 69–78 (2016).
pubmed: 25722065
doi: 10.1016/j.bone.2015.02.019
Farr, J. N. et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J. Bone Miner. Res. 29, 787–795 (2014). The first in vivo demonstration that bone material properties are impaired in patients with T2DM.
pubmed: 24123088
doi: 10.1002/jbmr.2106
Tonks, K. T., White, C. P., Center, J. R., Samocha-Bonet, D. & Greenfield, J. R. Bone turnover is suppressed in insulin resistance, independent of adiposity. J. Clin. Endocrinol. Metab. 102, 1112–1121 (2017). This study demonstrates that the reduced bone turnover in patients with T2DM is linked to insulin resistance and increases in visceral adipose tissue.
pubmed: 28324004
doi: 10.1210/jc.2016-3282
Timar, B. et al. The impact of diabetic neuropathy on balance and on the risk of falls in patients with type 2 diabetes mellitus: a cross-sectional study. PLoS ONE 11, e0154654 (2016).
pubmed: 27119372
pmcid: 4847853
doi: 10.1371/journal.pone.0154654
Leslie, W. D., Aubry-Rozier, B., Lamy, O. & Hans, D. TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 98, 602–609 (2013).
pubmed: 23341489
doi: 10.1210/jc.2012-3118
Patsch, J. M. et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 28, 313–324 (2013).
pubmed: 22991256
doi: 10.1002/jbmr.1763
Heilmeier, U. et al. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos. Int. 27, 2791–2802 (2016).
pubmed: 27154435
pmcid: 6687459
doi: 10.1007/s00198-016-3614-7
Burghardt, A. J. et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 5045–5055 (2010).
pubmed: 20719835
pmcid: 2968722
doi: 10.1210/jc.2010-0226
Yu, E. W. et al. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos. Int. 26, 673–679 (2015).
pubmed: 25398431
doi: 10.1007/s00198-014-2927-7
Samakkarnthai, P. et al. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 105, e3718–e372 (2020). This study demonstrates that, in patients with T2DM, impaired bone material properties are associated with accumulation of AGEs, whereas increased cortical porosity is associated with microvascular disease.
pmcid: 7458544
doi: 10.1210/clinem/dgaa388
Samelson, E. J. et al. Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT study. J. Bone Miner. Res. 33, 54–62 (2018).
pubmed: 28929525
doi: 10.1002/jbmr.3240
Paccou, J. et al. Bone microarchitecture in men and women with diabetes: the importance of cortical porosity. Calcif. Tissue Int. 98, 465–473 (2016).
pubmed: 26686695
doi: 10.1007/s00223-015-0100-8
Shanbhogue, V. V. et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur. J. Endocrinol. 174, 115–124 (2016).
pubmed: 26537860
doi: 10.1530/EJE-15-0860
Shu, A. et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos. Int. 23, 635–641 (2012).
pubmed: 21424265
doi: 10.1007/s00198-011-1595-0
Bala, Y. et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J. Bone Miner. Res. 29, 1356–1362 (2014).
pubmed: 24519558
doi: 10.1002/jbmr.2167
Bala, Y. et al. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women. J. Bone Miner. Res. 29, 380–388 (2014).
pubmed: 24115129
doi: 10.1002/jbmr.2101
Furst, J. R. et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 2502–2510 (2016).
pubmed: 27115060
pmcid: 4891790
doi: 10.1210/jc.2016-1437
Nilsson, A. G. et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J. Bone Miner. Res. 32, 1062–1071 (2017).
pubmed: 27943408
doi: 10.1002/jbmr.3057
Dawson-Hughes, B., Bouxsein, M. & Shea, K. Bone material strength in normoglycemic and hyperglycemic black and white older adults. Osteoporos. Int. 30, 2429–2435 (2019).
pubmed: 31463589
pmcid: 6879849
doi: 10.1007/s00198-019-05140-1
Meerwaldt, R. et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47, 1324–1330 (2004).
pubmed: 15243705
doi: 10.1007/s00125-004-1451-2
Litwinoff, E., Hurtado Del Pozo, C., Ramasamy, R. & Schmidt, A. M. Emerging targets for therapeutic development in diabetes and its complications: the RAGE signaling pathway. Clin. Pharmacol. Ther. 98, 135–144 (2015).
pubmed: 25974754
doi: 10.1002/cpt.148
Fournet, M., Bonté, F. & Desmoulière, A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis. 9, 880–900 (2018).
pubmed: 30271665
pmcid: 6147582
doi: 10.14336/AD.2017.1121
Byun, K. et al. Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol. Ther. 177, 44–55 (2017).
pubmed: 28223234
doi: 10.1016/j.pharmthera.2017.02.030
Desai, C. S., Blumenthal, R. S. & Greenland, P. Screening low-risk individuals for coronary artery disease. Curr. Atheroscler. Rep. 16, 402 (2014).
pubmed: 24522859
doi: 10.1007/s11883-014-0402-8
Bacharach, J. M., Rooke, T. W., Osmundson, P. J. & Gloviczki, P. Predictive value of transcutaneous oxygen pressure and amputation success by use of supine and elevation measurements. J. Vasc. Surg. 15, 558–563 (1992).
pubmed: 1538514
doi: 10.1016/0741-5214(92)90196-F
Thrailkill, K. M., Lumpkin, C. K. Jr., Bunn, R. C., Kemp, S. F. & Fowlkes, J. L. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–745 (2005).
pubmed: 16215165
doi: 10.1152/ajpendo.00159.2005
Stolk, R. P. et al. Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam study. Bone 18, 545–549 (1996).
pubmed: 8805995
doi: 10.1016/8756-3282(96)00079-8
Johnson, K. C. et al. The effect of intentional weight loss on fracture risk in persons with diabetes: results from the look AHEAD randomized clinical trial. J. Bone Miner. Res. 32, 2278–2287 (2017).
pubmed: 28678345
doi: 10.1002/jbmr.3214
DiGirolamo, D. J., Clemens, T. L. & Kousteni, S. The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012).
pubmed: 23045255
doi: 10.1038/nrrheum.2012.157
Liu, J. M., Rosen, C. J., Ducy, P., Kousteni, S. & Karsenty, G. Regulation of glucose handling by the skeleton: insights from mouse and human studies. Diabetes 65, 3225–3232 (2016).
pubmed: 27959858
pmcid: 5860442
doi: 10.2337/db16-0053
Dirckx, N., Moorer, M. C., Clemens, T. L. & Riddle, R. C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15, 651–665 (2019).
pubmed: 31462768
pmcid: 6958555
doi: 10.1038/s41574-019-0246-y
Lecka-Czernik, B. & Rosen, C. J. Energy excess, glucose utilization, and skeletal remodeling: new insights. J. Bone Miner. Res. 30, 1356–1361 (2015).
pubmed: 26094610
doi: 10.1002/jbmr.2574
Rendina-Ruedy, E. & Rosen, C. J. Lipids in the bone marrow: an evolving perspective. Cell Metab. 31, 219–231 (2020).
pubmed: 31668874
doi: 10.1016/j.cmet.2019.09.015
Shanbhogue, V. V., Mitchell, D. M., Rosen, C. J. & Bouxsein, M. L. Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol. 4, 159–173 (2016).
pubmed: 26365605
doi: 10.1016/S2213-8587(15)00283-1
Eckhardt, B. A. et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight 5, e135236 (2020). This work demonstrates that at least in a mouse model, the combination of obesity and hyperglycaemia is associated with increased cellular senescence in bone.
pmcid: 7253018
doi: 10.1172/jci.insight.135236
Starr, J. F. et al. Robust trabecular microstructure in type 2 diabetes revealed by individual trabecula segmentation analysis of HR-pQCT Images. J. Bone Miner. Res. 33, 1665–1675 (2018).
pubmed: 29750829
doi: 10.1002/jbmr.3465
Ogata, N. et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J. Clin. Invest. 105, 935–943 (2000).
pubmed: 10749573
pmcid: 377487
doi: 10.1172/JCI9017
Abrahamsen, B., Rohold, A., Henriksen, J. E. & Beck-Nielsen, H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet. Med. 17, 124–129 (2000).
pubmed: 10746482
doi: 10.1046/j.1464-5491.2000.00234.x
Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007).
pubmed: 17287468
doi: 10.2337/db06-1656
Martin, T. J. & Sims, N. A. RANKL/OPG; critical role in bone physiology. Rev. Endocr. Metab. Disord. 16, 131–139 (2015).
pubmed: 25557611
doi: 10.1007/s11154-014-9308-6
Krings, A. et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50, 546–552 (2012).
pubmed: 21723971
doi: 10.1016/j.bone.2011.06.016
Sheu, Y. et al. Vertebral bone marrow fat, bone mineral density and diabetes: the osteoporotic fractures in men (MrOS) study. Bone 97, 299–305 (2017).
pubmed: 28179169
pmcid: 5367972
doi: 10.1016/j.bone.2017.02.001
Baum, T. et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J. Magn. Reson. Imaging 35, 117–124 (2012).
pubmed: 22190287
doi: 10.1002/jmri.22757
Fazeli, P. K. et al. Marrow fat and bone–new perspectives. J. Clin. Endocrinol. Metab. 98, 935–945 (2013).
pubmed: 23393168
pmcid: 3590487
doi: 10.1210/jc.2012-3634
Nuche-Berenguer, B. et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul. Pept. 159, 61–66 (2010).
pubmed: 19586609
doi: 10.1016/j.regpep.2009.06.010
Gennari, L. et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1737–1744 (2012).
pubmed: 22399511
doi: 10.1210/jc.2011-2958
Piccoli, A. et al. Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with type 2 diabetes. J. Bone Miner. Res. 35, 2415–2422 (2020).
pubmed: 32777114
doi: 10.1002/jbmr.4153
Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).
pubmed: 23389618
doi: 10.1038/nm.3074
Ma, Y. H. et al. Circulating sclerostin associated with vertebral bone marrow fat in older men but not women. J. Clin. Endocrinol. Metab. 99, E2584–2590 (2014).
pubmed: 25144629
pmcid: 4255105
doi: 10.1210/jc.2013-4493
Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263–275 (2020).
pubmed: 32161396
doi: 10.1038/s41574-020-0335-y
Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).
pubmed: 8943005
pmcid: 19411
doi: 10.1073/pnas.93.24.13742
Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).
pubmed: 12912919
pmcid: 175806
doi: 10.1093/emboj/cdg417
Wissler Gerdes, E. O., Zhu, Y., Tchkonia, T. & Kirkland, J. L. Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 287, 2418–2427 (2020).
pubmed: 32112672
pmcid: 7302972
doi: 10.1111/febs.15264
Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).
pubmed: 20078217
pmcid: 4166495
doi: 10.1146/annurev-pathol-121808-102144
Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).
pubmed: 23770676
pmcid: 3732483
doi: 10.1038/ncb2784
Palmer, A. K. et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289–2298 (2015).
pubmed: 26106186
pmcid: 4477358
doi: 10.2337/db14-1820
Palmer, A. K., Gustafson, B., Kirkland, J. L. & Smith, U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62, 1835–1841 (2019).
pubmed: 31451866
pmcid: 6731336
doi: 10.1007/s00125-019-4934-x
Prata, L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).
pubmed: 31088710
doi: 10.1016/j.smim.2019.04.003
Wang, E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55, 2284–2292 (1995).
pubmed: 7757977
Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).
pubmed: 20701600
doi: 10.1111/j.1474-9726.2010.00608.x
Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).
pubmed: 30907060
pmcid: 6516193
doi: 10.1111/acel.12950
Aguayo-Mazzucato, C. et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142.e124 (2019).
pubmed: 31155496
pmcid: 6610720
doi: 10.1016/j.cmet.2019.05.006
Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).
pubmed: 28608850
pmcid: 5474745
doi: 10.1038/ncomms15691
Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077.e8 (2019).
pubmed: 30612898
pmcid: 6509403
doi: 10.1016/j.cmet.2018.12.008
Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).
pubmed: 26687007
pmcid: 4758946
doi: 10.7554/eLife.12997
Zaragosi, L. E. et al. Activin A plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59, 2513–2521 (2010).
pubmed: 20530742
pmcid: 3279533
doi: 10.2337/db10-0013
Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).
pubmed: 22321662
doi: 10.1111/j.1474-9726.2012.00795.x
da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).
pubmed: 30462359
doi: 10.1111/acel.12848
Manavalan, J. S. et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3240–3250 (2012).
pubmed: 22740707
pmcid: 3431571
doi: 10.1210/jc.2012-1546
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).
pubmed: 31675495
doi: 10.1016/j.cell.2019.10.005
Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J. Cell Biol. 203, 929–942 (2013).
pubmed: 24344186
pmcid: 3871423
doi: 10.1083/jcb.201306073
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).
pubmed: 19053174
doi: 10.1371/journal.pbio.0060301
Ramasamy, R., Shekhtman, A. & Schmidt, A. M. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert. Opin. Ther. Targets 20, 431–446 (2016).
pubmed: 26558318
doi: 10.1517/14728222.2016.1111873
Poundarik, A. A. et al. A direct role of collagen glycation in bone fracture. J. Mech. Behav. Biomed. Mater. 52, 120–130 (2015).
pubmed: 26530231
pmcid: 4651854
doi: 10.1016/j.jmbbm.2015.08.012
Zhou, Z. et al. Regulation of osteoclast function and bone mass by RAGE. J. Exp. Med. 203, 1067–1080 (2006).
pubmed: 16606672
pmcid: 2118287
doi: 10.1084/jem.20051947
Franke, S. et al. Advanced glycation end products affect growth and function of osteoblasts. Clin. Exp. Rheumatol. 29, 650–660 (2011).
pubmed: 21906430
Ahmed, N. & Thornalley, P. J. Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem. Soc. Trans. 31, 1417–1422 (2003).
pubmed: 14641078
doi: 10.1042/bst0311417
O’Grady, K. L. et al. Development and application of mass spectroscopy assays for Nε-(1-carboxymethyl)-L-lysine and pentosidine in renal failure and diabetes. J. Appl. Lab. Med. 5, 558–568 (2020).
pubmed: 32445362
pmcid: 7192546
doi: 10.1093/jalm/jfaa023
Karim, L. et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes. Bone 114, 32–39 (2018).
pubmed: 29857063
pmcid: 6141002
doi: 10.1016/j.bone.2018.05.030
Schwartz, A. V. et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 2380–2386 (2009).
pubmed: 19383780
pmcid: 2708944
doi: 10.1210/jc.2008-2498
Wang, J., Wang, H., Shi, J. & Ding, Y. Effects of bone marrow MSCs transfected with sRAGE on the intervention of HMGB1 induced immuno-inflammatory reaction. Int. J. Clin. Exp. Pathol. 8, 12028–12040 (2015).
pubmed: 26722388
pmcid: 4680333
Lalla, E. et al. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J. Clin. Invest. 105, 1117–1124 (2000).
pubmed: 10772656
pmcid: 300834
doi: 10.1172/JCI8942
Walker, D., Lue, L. F., Paul, G., Patel, A. & Sabbagh, M. N. Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer’s disease. Expert. Opin. Investig. Drugs 24, 393–399 (2015).
pubmed: 25586103
pmcid: 5502774
doi: 10.1517/13543784.2015.1001490
Galasko, D. et al. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease. Neurology 82, 1536–1542 (2014).
pubmed: 24696507
pmcid: 4011464
doi: 10.1212/WNL.0000000000000364
Mao, Y. X. et al. RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products. Cell Death Dis. 9, 674 (2018).
pubmed: 29867140
pmcid: 5986782
doi: 10.1038/s41419-018-0718-3
Chen, H. et al. Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2, P38 and STAT3 signalling pathways. Int. Immunopharmacol. 52, 143–149 (2017).
pubmed: 28910744
doi: 10.1016/j.intimp.2017.09.004
Lafage-Proust, M. H. et al. Assessment of bone vascularization and its role in bone remodeling. Bonekey Rep. 4, 662 (2015).
pubmed: 25861447
pmcid: 4389660
doi: 10.1038/bonekey.2015.29
Andersen, T. L. et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am. J. Pathol. 174, 239–247 (2009).
pubmed: 19095960
pmcid: 2631336
doi: 10.2353/ajpath.2009.080627
Rehman, J., Li, J., Orschell, C. M. & March, K. L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).
pubmed: 12615796
doi: 10.1161/01.CIR.0000058702.69484.A0
Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 162, 1083–1093 (2003).
pubmed: 12651601
pmcid: 1851242
doi: 10.1016/S0002-9440(10)63905-3
Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24, 274–282 (2009).
pubmed: 18847330
doi: 10.1359/jbmr.081003
Liao, Y. H. et al. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 35, 4901–4910 (2014).
pubmed: 24674465
doi: 10.1016/j.biomaterials.2014.02.055
Divya, M. S. et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res. Ther. 3, 57 (2012).
pubmed: 23253356
pmcid: 3580487
doi: 10.1186/scrt148
Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).
pubmed: 26982353
pmcid: 4794754
doi: 10.1016/j.immuni.2016.02.015
Doherty, M. J. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828–838 (1998).
pubmed: 9610747
doi: 10.1359/jbmr.1998.13.5.828
Rask-Madsen, C. & King, G. L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 17, 20–33 (2013).
pubmed: 23312281
pmcid: 3546345
doi: 10.1016/j.cmet.2012.11.012
Farr, J. N. & Khosla, S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82, 28–34 (2016).
pubmed: 26211989
doi: 10.1016/j.bone.2015.07.027
Cosman, F. et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).
pubmed: 25182228
pmcid: 4176573
doi: 10.1007/s00198-014-2794-2
Roman de Mettelinge, T., Cambier, D., Calders, P., Van Den Noortgate, N. & Delbaere, K. Understanding the relationship between type 2 diabetes mellitus and falls in older adults: a prospective cohort study. PLoS ONE 8, e67055 (2013).
pubmed: 23825617
pmcid: 3692422
doi: 10.1371/journal.pone.0067055
Schwartz, A. V. et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25, 1749–1754 (2002).
pubmed: 12351472
doi: 10.2337/diacare.25.10.1749
Chapman, A., Meyer, C., Renehan, E., Hill, K. D. & Browning, C. J. Exercise interventions for the improvement of falls-related outcomes among older adults with diabetes mellitus: a systematic review and meta-analyses. J. Diabetes Complicat. 31, 631–645 (2017).
doi: 10.1016/j.jdiacomp.2016.09.015
Gu, Y. & Dennis, S. M. Are falls prevention programs effective at reducing the risk factors for falls in people with type-2 diabetes mellitus and peripheral neuropathy: a systematic review with narrative synthesis. J. Diabetes Complicat. 31, 504–516 (2017).
doi: 10.1016/j.jdiacomp.2016.10.004
Napoli, N. et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57, 2057–2065 (2014).
pubmed: 24908567
pmcid: 4344350
doi: 10.1007/s00125-014-3289-6
Pscherer, S., Kostev, K., Dippel, F. W. & Rathmann, W. Fracture risk in patients with type 2 diabetes under different antidiabetic treatment regimens: a retrospective database analysis in primary care. Diabetes Metab. Syndr. Obes. 9, 17–23 (2016).
pubmed: 26929655
pmcid: 4767062
Losada-Grande, E. et al. Insulin use and excess fracture risk in patients with type 2 diabetes: a propensity-matched cohort analysis. Sci. Rep. 7, 3781 (2017).
pubmed: 28630427
pmcid: 5476619
doi: 10.1038/s41598-017-03748-z
Palermo, A. et al. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos. Int. 26, 2073–2089 (2015).
pubmed: 25910746
doi: 10.1007/s00198-015-3123-0
Cheng, L. et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 35, e3168 (2019).
pubmed: 30974033
doi: 10.1002/dmrr.3168
Zhu, Z. N., Jiang, Y. F. & Ding, T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68, 115–123 (2014).
pubmed: 25173606
doi: 10.1016/j.bone.2014.08.010
Watts, N. B. et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 101, 157–166 (2016).
pubmed: 26580237
doi: 10.1210/jc.2015-3167
Li, X. et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: an updated meta-analysis. Diabetes Metab. Res. Rev. 35, e3170 (2019).
pubmed: 30983141
doi: 10.1002/dmrr.3170
Barzilay, J. I. et al. The impact of antihypertensive medications on bone mineral density and fracture risk. Curr. Cardiol. Rep. 19, 76 (2017).
pubmed: 28752275
doi: 10.1007/s11886-017-0888-0
Bokrantz, T. et al. Antihypertensive drug classes and the risk of hip fracture: results from the Swedish primary care cardiovascular database. J. Hypertens. 38, 167–175 (2020).
pubmed: 31568060
doi: 10.1097/HJH.0000000000002245
Shi, R., Mei, Z., Zhang, Z. & Zhu, Z. Effects of statins on relative risk of fractures for older adults: an updated systematic review with meta-analysis. J. Am. Med. Dir. Assoc. 20, 1566–1578.e3 (2019).
pubmed: 31395495
doi: 10.1016/j.jamda.2019.06.027
Wu, Q., Bencaz, A. F., Hentz, J. G. & Crowell, M. D. Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case-control studies. Osteoporos. Int. 23, 365–375 (2012).
pubmed: 21904950
doi: 10.1007/s00198-011-1778-8
Wu, Q., Qu, W., Crowell, M. D., Hentz, J. G. & Frey, K. A. Tricyclic antidepressant use and risk of fractures: a meta-analysis of cohort and case-control studies. J. Bone Miner. Res. 28, 753–763 (2013).
pubmed: 23165455
doi: 10.1002/jbmr.1813
Anagnostis, P. et al. Efficacy of anti-osteoporotic medications in patients with type 1 and 2 diabetes mellitus: a systematic review. Endocrine 60, 373–383 (2018).
pubmed: 29411304
doi: 10.1007/s12020-018-1548-x
Napoli, N. et al. Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial. Diabetes Metab. Res. Rev. 34, e2991 (2018).
pubmed: 29430796
doi: 10.1002/dmrr.2991
Kondegowda, N. G. et al. Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-κB ligand pathway. Cell Metab. 22, 77–85 (2015).
pubmed: 26094891
pmcid: 4597781
doi: 10.1016/j.cmet.2015.05.021
Schmitz, F., Roscioni, S. & Lickert, H. Repurposing an osteoporosis drug for β cell regeneration in diabetic patients. Cell Metab. 22, 58–59 (2015).
pubmed: 26094892
doi: 10.1016/j.cmet.2015.05.024
Weivoda, M. M. et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat. Commun. 11, 87 (2020).
pubmed: 31911667
pmcid: 6946812
doi: 10.1038/s41467-019-14003-6
Dhaliwal, R. et al. Abaloparatide in postmenopausal women with osteoporosis and type 2 diabetes: a post hoc analysis of the ACTIVE study. JBMR 4, e10346 (2020).
Schmidt, A. M. Soluble RAGEs - prospects for treating & tracking metabolic and inflammatory disease. Vasc. Pharmacol. 72, 1–8 (2015).
doi: 10.1016/j.vph.2015.06.011
Ding, K. H. et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem. Biophys. Res. Commun. 340, 1091–1097 (2006).
pubmed: 16403440
doi: 10.1016/j.bbrc.2005.12.107
Egawa, T. et al. Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br. J. Nutr. 117, 21–29 (2017).
pubmed: 28093090
doi: 10.1017/S0007114516004591
Davis, H. M. et al. Short-term pharmacologic RAGE inhibition differentially affects bone and skeletal muscle in middle-aged mice. Bone 124, 89–102 (2019).
pubmed: 31028960
pmcid: 6543548
doi: 10.1016/j.bone.2019.04.012
Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017). A study demonstrating that reducing the burden of senescent cells ameliorates age-related bone loss in mice, which raises the possibility that a similar approach might be useful in alleviating the skeletal fragility associated with T2DM.
pubmed: 28825716
pmcid: 5657592
doi: 10.1038/nm.4385
Monami, M. et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 31, 199–203 (2008).
pubmed: 18024851
doi: 10.2337/dc07-1736
Vestergaard, P., Rejnmark, L. & Mosekilde, L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48, 1292–1299 (2005).
pubmed: 15909154
doi: 10.1007/s00125-005-1786-3
Hidayat, K., Du, X., Wu, M. J. & Shi, B. M. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obes. Rev. 20, 1494–1503 (2019).
pubmed: 31250977
doi: 10.1111/obr.12885
Josse, R. G. et al. Sitagliptin and risk of fractures in type 2 diabetes: results from the TECOS trial. Diabetes Obes. Metab. 19, 78–86 (2017).
pubmed: 27607571
doi: 10.1111/dom.12786
Schwartz, A. V. et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J. Clin. Endocrinol. Metab. 100, 4059–4066 (2015).
pubmed: 26305617
pmcid: 4702444
doi: 10.1210/jc.2015-1215
Lapane, K. L., Jesdale, B. M., Dubé, C. E., Pimentel, C. B. & Rajpathak, S. N. Sulfonylureas and risk of falls and fractures among nursing home residents with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 109, 411–419 (2015).
pubmed: 26008723
doi: 10.1016/j.diabres.2015.05.009
Hidayat, K., Du, X. & Shi, B. M. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos. Int. 30, 1923–1940 (2019).
pubmed: 31134305
doi: 10.1007/s00198-019-04968-x
Monami, M., Dicembrini, I., Antenore, A. & Mannucci, E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 34, 2474–2476 (2011).
pubmed: 22025784
pmcid: 3198283
doi: 10.2337/dc11-1099
Mosenzon, O. et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial. Diabetes Care 38, 2142–2150 (2015).
pubmed: 26358285
doi: 10.2337/dc15-1068
Kohan, D. E., Fioretto, P., Tang, W. & List, J. F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85, 962–971 (2014).
pubmed: 24067431
doi: 10.1038/ki.2013.356