CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
10 2021
Historique:
received: 02 01 2021
accepted: 06 07 2021
pubmed: 15 9 2021
medline: 13 10 2021
entrez: 14 9 2021
Statut: ppublish

Résumé

An emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.

Identifiants

pubmed: 34518685
doi: 10.1038/s41589-021-00858-8
pii: 10.1038/s41589-021-00858-8
pmc: PMC8460447
mid: EMS129591
doi:

Substances chimiques

Cullin Proteins 0
NEDD8 Protein 0
NEDD8 protein, human 0
ARIH2 protein, human EC 2.3.2.27
Ubiquitin-Protein Ligases EC 2.3.2.27

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1075-1083

Subventions

Organisme : European Research Council
ID : 789016
Pays : International

Informations de copyright

© 2021. The Author(s).

Références

Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
doi: 10.1146/annurev-biochem-060310-170328 pubmed: 22524316
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).
pubmed: 22482907 doi: 10.1146/annurev-biochem-051810-094654
Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).
pubmed: 15021886 doi: 10.1038/sj.onc.1207414
Rusnac, D. V. & Zheng, N. Structural biology of CRL ubiquitin ligases. Adv. Exp. Med Biol. 1217, 9–31 (2020).
pubmed: 31898219 doi: 10.1007/978-981-15-1025-0_2
Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).
pubmed: 11961546 doi: 10.1038/416703a
Kamura, T. et al. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev. 18, 3055–3065 (2004).
pubmed: 15601820 pmcid: 535916 doi: 10.1101/gad.1252404
Huang, D. T. et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 33, 483–495 (2009).
pubmed: 19250909 pmcid: 2725360 doi: 10.1016/j.molcel.2009.01.011
Stanley, D. J. et al. Inhibition of a NEDD8 cascade restores restriction of HIV by APOBEC3G. PLoS Pathog. 8, e1003085 (2012).
pubmed: 23300442 pmcid: 3531493 doi: 10.1371/journal.ppat.1003085
Huttenhain, R. et al. ARIH2 is a Vif-dependent regulator of CUL5-mediated APOBEC3G degradation in HIV infection. Cell Host Microbe 26, 86–99 e87 (2019).
pubmed: 31253590 pmcid: 7153695 doi: 10.1016/j.chom.2019.05.008
Kabir, S. et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. eLife https://doi.org/10.7554/eLife.44288 (2019).
Hundley, F. V. et al. A comprehensive phenotypic CRISPR-Cas9 screen of the ubiquitin pathway uncovers roles of ubiquitin ligases in mitosis. Mol. Cell https://doi.org/10.1016/j.molcel.2021.01.014 (2021).
Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).
pubmed: 18805092 pmcid: 2628631 doi: 10.1016/j.cell.2008.07.022
Baek, K., Scott, D. C. & Schulman, B. A. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr. Opin. Struct. Biol. 67, 101–109 (2020).
pubmed: 33160249 doi: 10.1016/j.sbi.2020.10.007 pmcid: 8096640
Debrincat, M. A. et al. Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J. Biol. Chem. 282, 4728–4737 (2007).
pubmed: 17148442 doi: 10.1074/jbc.M609164200
Thomas, J. C., Matak-Vinkovic, D., Van Molle, I. & Ciulli, A. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type cullin-RING E3 ubiquitin ligases. Biochemistry 52, 5236–5246 (2013).
pubmed: 23837592 doi: 10.1021/bi400758h
Scott, D. C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214 e1124 (2016).
pubmed: 27565346 pmcid: 5091668 doi: 10.1016/j.cell.2016.07.027
Baek, K. et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020).
pubmed: 32051583 pmcid: 7050210 doi: 10.1038/s41586-020-2000-y
Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).
pubmed: 22842904 pmcid: 3442243 doi: 10.1038/nature11376
Pruneda, J. N. et al. Structure of an E3:E2 approximately Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).
pubmed: 22885007 pmcid: 3462262 doi: 10.1016/j.molcel.2012.07.001
Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012).
pubmed: 22902369 doi: 10.1038/nsmb.2379
Kelsall, I. R. et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J. 32, 2848–2860 (2013).
pubmed: 24076655 pmcid: 3817463 doi: 10.1038/emboj.2013.209
Lumpkin, R. J., Baker, R. W., Leschziner, A. E. & Komives, E. A. Structure and dynamics of the ASB9 CUL-RING E3 Ligase. Nat. Commun. 11, 2866 (2020).
pubmed: 32513959 pmcid: 7280518 doi: 10.1038/s41467-020-16499-9
Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3–E3 super-assembly. Nature 590, 671–676 (2021).
pubmed: 33536622 pmcid: 7904520 doi: 10.1038/s41586-021-03197-9
Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853–2867 (2011).
pubmed: 21694720 pmcid: 3160258 doi: 10.1038/emboj.2011.204
Duda, D. M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030–1041 (2013).
pubmed: 23707686 pmcid: 3747818 doi: 10.1016/j.str.2013.04.019
Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. https://doi.org/10.1038/emboj.2013.125 (2013).
doi: 10.1038/emboj.2013.125 pubmed: 23727886 pmcid: 3730226
Trempe, J. F. et al. Structure of Parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).
pubmed: 23661642 doi: 10.1126/science.1237908
Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013).
pubmed: 23770887 doi: 10.1038/ncomms2982
Liu, Y. & Tan, X. Viral manipulations of the Cullin-RING ubiquitin ligases. Adv. Exp. Med Biol. 1217, 99–110 (2020).
pubmed: 31898224 doi: 10.1007/978-981-15-1025-0_7
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).
pubmed: 14564014 doi: 10.1126/science.1089591
Zhang, W., Du, J., Evans, S. L., Yu, Y. & Yu, X. F. T-cell differentiation factor CBF-beta regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481, 376–379 (2011).
pubmed: 22190036 doi: 10.1038/nature10718
Jager, S. et al. Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2011).
pubmed: 22190037 pmcid: 3310910 doi: 10.1038/nature10693
Lumpkin, R. J., Ahmad, A. S., Blake, R., Condon, C. J. & Komives, E. A. The mechanism of NEDD8 activation of CUL5 ubiquitin E3 ligases. Mol. Cell Proteomics https://doi.org/10.1074/mcp.RA120.002414 (2020).
Lechtenberg, B. C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546–550 (2016).
pubmed: 26789245 pmcid: 4856479 doi: 10.1038/nature16511
Condos, T. E. et al. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation. EMBO J. https://doi.org/10.15252/embj.2018100014 (2018).
Guo, Y. et al. Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505, 229–233 (2014).
pubmed: 24402281 doi: 10.1038/nature12884
Binning, J. M., Chesarino, N. M., Emerman, M. & Gross, J. D. Structural basis for a species-specific determinant of an SIV Vif protein toward hominid APOBEC3G antagonism. Cell Host Microbe 26, 739–747 e734 (2019).
pubmed: 31830442 pmcid: 6913891 doi: 10.1016/j.chom.2019.10.014
Hu, Y. et al. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Nat. Struct. Mol. Biol. 26, 1176–1183 (2019).
pubmed: 31792451 pmcid: 6899190 doi: 10.1038/s41594-019-0343-6
Kitamura, S. et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat. Struct. Mol. Biol. 19, 1005–1010 (2012).
pubmed: 23001005 doi: 10.1038/nsmb.2378
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. https://doi.org/10.1038/s42003-021-02399-1 (2021).
Scott, D. C. et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 (2014).
pubmed: 24949976 pmcid: 4247792 doi: 10.1016/j.cell.2014.04.037
Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374 (2015).
pubmed: 26161729 pmcid: 4984986 doi: 10.1038/nature14879
Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475–483 (2017).
pubmed: 28414322 pmcid: 5420311 doi: 10.1038/nsmb.3400
Gladkova, C., Maslen, S. L., Skehel, J. M. & Komander, D. Mechanism of Parkin activation by PINK1. Nature 559, 410–414 (2018).
pubmed: 29995846 pmcid: 6071873 doi: 10.1038/s41586-018-0224-x
Sauve, V. et al. Mechanism of parkin activation by phosphorylation. Nat. Struct. Mol. Biol. 25, 623–630 (2018).
pubmed: 29967542 doi: 10.1038/s41594-018-0088-7
Dove, K. K. et al. Structural studies of HHARI/UbcH7 approximately Ub reveal unique E2 approximately Ub conformational restriction by RBR RING1. Structure 25, 890–900 e895 (2017).
pubmed: 28552575 pmcid: 5462532 doi: 10.1016/j.str.2017.04.013
Yuan, L., Lv, Z., Atkison, J. H. & Olsen, S. K. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat. Commun. 8, 211 (2017).
pubmed: 28790309 pmcid: 5548887 doi: 10.1038/s41467-017-00272-6
Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982 (2005).
pubmed: 15959518 doi: 10.1038/nature03634
Flick, K. et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat. Cell Biol. 6, 634–641 (2004).
pubmed: 15208638 doi: 10.1038/ncb1143
Lin, A. E. et al. ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system. Nat. Immunol. 14, 27–33 (2013).
pubmed: 23179078 doi: 10.1038/ni.2478
Kabsch, W. XDS. Acta Crystallogr. 66, 125–132 (2010).
Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. 66, 479–485 (2010).
Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. 62, 1002–1011 (2006).
doi: 10.1107/S0108767306098266
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 60, 2126–2132 (2004).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. 66, 213–221 (2010).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007 pubmed: 16182563
Scheres, S. H. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).
pubmed: 27572726 doi: 10.1016/bs.mie.2016.04.012
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084

Auteurs

Sebastian Kostrhon (S)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

J Rajan Prabu (JR)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Kheewoong Baek (K)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Daniel Horn-Ghetko (D)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Susanne von Gronau (S)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Maren Klügel (M)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Jérôme Basquin (J)

Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.

Arno F Alpi (AF)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.

Brenda A Schulman (BA)

Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany. schulman@biochem.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH