Effect of postural alignment alteration with age on vertebral strength.
Barycentremetry
Finite element method
Global sagittal alignment
Osteoporosis
Vertebral strength
Journal
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
ISSN: 1433-2965
Titre abrégé: Osteoporos Int
Pays: England
ID NLM: 9100105
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
12
02
2021
accepted:
04
08
2021
pubmed:
15
9
2021
medline:
8
2
2022
entrez:
14
9
2021
Statut:
ppublish
Résumé
EOS biplane radiographs of 117 subjects between 20 and 83 years were analyzed to compute the upper body lever arm over the L1 vertebra and its impact on vertebral strength. Postural sagittal alignment alteration was observed with age and resulted in a greater lever arm causing vertebral strength to decrease. The purpose of this study was to analyze the impact of postural alignment changes with age on vertebral strength using finite element analysis and barycentremetry. A total of 117 subjects from 20 to 83 years were divided in three age groups: young (20 to 40 years, 62 subjects), intermediate (40 to 60 years, 26 subjects), and elderly (60 years and over, 29 subjects). EOS biplane radiographs were acquired, allowing 3D reconstruction of the spine and body envelope as well as spinal, pelvic, and sagittal alignment parameter measurements. A barycentremetry method allowed the estimation of the mass and center of mass (CoM) position of the upper body above L1, relatively to the center of the L1 vertebra (lever arm). To investigate the effect of this lever arm, vertebral strength of a generic finite element model (with constant geometry and mechanical properties for all subjects) was successively computed applying the personalized lever arm of each subject. A combination of an increase in thoracic kyphosis, cervical lordosis, and pelvic tilt with a loss of lumbar lordosis was observed between the young and the older groups. Sagittal alignment parameters indicated a more forward position as age increased. The lever arm of the CoM above L1 varied from an average of 1 mm backward for the young group, to averages of 10 and 24 mm forward, respectively, for the intermediate and elderly group. As a result, vertebral strength decreased from 2527 N for the young group to 1820 N for the elderly group. The global sagittal alignment modifications observed with age were consistent with the literature. Posture alteration with age reduced vertebral strength significantly in this simplified loading model. Postural alignment seems essential to be considered in the evaluation of osteoporotic patients.
Identifiants
pubmed: 34518901
doi: 10.1007/s00198-021-06093-0
pii: 10.1007/s00198-021-06093-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
443-451Informations de copyright
© 2021. International Osteoporosis Foundation and National Osteoporosis Foundation.
Références
Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4
doi: 10.1007/s00198-006-0172-4
pubmed: 16983459
Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521. https://doi.org/10.1001/jama.2009.50
doi: 10.1001/jama.2009.50
pubmed: 19190316
Löffler MT, Jacob A, Valentinitsch A et al (2019) Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 29:4980–4989. https://doi.org/10.1007/s00330-019-06018-w
doi: 10.1007/s00330-019-06018-w
pubmed: 30790025
pmcid: 6682570
Cosman F, Krege JH, Looker AC et al (2017) Spine fracture prevalence in a nationally representative sample of US women and men aged ≥40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 28:1857–1866. https://doi.org/10.1007/s00198-017-3948-9
doi: 10.1007/s00198-017-3948-9
Oudshoorn C, Hartholt K, Zillikens C et al (2012) Emergency department visits due to vertebral fractures in the Netherlands, 1986–2008: steep increase in the oldest old, strong association with falls. Inj Int J Care Inj 43:458–461. https://doi.org/10.1016/j.injury.2011.09.014
doi: 10.1016/j.injury.2011.09.014
Wang H, Li C, Xiang Q et al (2012) Epidemiology of spinal fractures among the elderly in Chongqing, China. Injury 43:2109–2116. https://doi.org/10.1016/j.injury.2012.04.008
doi: 10.1016/j.injury.2012.04.008
pubmed: 22554943
Hu Z, Man GCW, Kwok AKL et al (2018) Global sagittal alignment in elderly patients with osteoporosis and its relationship with severity of vertebral fracture and quality of life. Arch Osteoporos 13:95. https://doi.org/10.1007/s11657-018-0512-y
doi: 10.1007/s11657-018-0512-y
pubmed: 30194552
Fechtenbaum J, Etcheto A, Kolta S et al (2016) Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 27:559–567. https://doi.org/10.1007/s00198-015-3283-y
doi: 10.1007/s00198-015-3283-y
Bassani T, Galbusera F, Luca A et al (2019) Physiological variations in the sagittal spine alignment in an asymptomatic elderly population. Spine J 19:1840–1849. https://doi.org/10.1016/j.spinee.2019.07.016
doi: 10.1016/j.spinee.2019.07.016
pubmed: 31377476
Amabile C, Le Huec J-C, Skalli W (2018) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 27:458–466. https://doi.org/10.1007/s00586-016-4830-8
doi: 10.1007/s00586-016-4830-8
pubmed: 27807772
Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750. https://doi.org/10.1016/S8756-3282(03)00210-2
doi: 10.1016/S8756-3282(03)00210-2
pubmed: 14555280
Li D, Xiao Z, Wang G, Zhao G (2014) Novel, fast and efficient image-based 3D modeling method and its application in fracture risk evaluation. Exp Ther Med 7:1583–1590. https://doi.org/10.3892/etm.2014.1645
doi: 10.3892/etm.2014.1645
pubmed: 24926348
pmcid: 4043561
Choisne J, Valiadis J-M, Travert C et al (2018) Vertebral strength prediction from bi-planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. J Mech Behav Biomed Mater 87:190–196. https://doi.org/10.1016/j.jmbbm.2018.07.026
doi: 10.1016/j.jmbbm.2018.07.026
pubmed: 30077078
Imai K (2011) Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. J Bone Miner Metab 29:645–651. https://doi.org/10.1007/s00774-011-0281-9
doi: 10.1007/s00774-011-0281-9
pubmed: 21667358
Allaire BT, Lu D, Johannesdottir F et al (2019) Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int 30:323–331. https://doi.org/10.1007/s00198-018-4716-1
doi: 10.1007/s00198-018-4716-1
pubmed: 30306225
Briggs AM, van Dieën JH, Wrigley TV et al (2007) Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 87:595–607. https://doi.org/10.2522/ptj.20060119
doi: 10.2522/ptj.20060119
pubmed: 17472956
Bruno AG, Anderson DE, D’Agostino J, Bouxsein ML (2012) The effect of thoracic kyphosis and sagittal plane alignment on vertebral compressive loading. J Bone Miner Res Off J Am Soc Bone Miner Res 27:2144–2151. https://doi.org/10.1002/jbmr.1658
doi: 10.1002/jbmr.1658
Buckley JM, Kuo CC, Cheng LC et al (2009) Relative strength of thoracic vertebrae in axial compression versus flexion. Spine J Off J North Am Spine Soc 9:478–485. https://doi.org/10.1016/j.spinee.2009.02.010
doi: 10.1016/j.spinee.2009.02.010
Travert C, Jolivet E, Sapin-de Brosses E et al (2011) Sensitivity of patient-specific vertebral finite element model from low dose imaging to material properties and loading conditions. Med Biol Eng Comput 49:1355–1361. https://doi.org/10.1007/s11517-011-0825-0
doi: 10.1007/s11517-011-0825-0
pubmed: 21927822
Cosson P, DUVAL-BEAUPERE G, (1993) Détermination personnalisée in vivo chez l’homme des efforts exercés sur les étages vertébraux thoraciques et lombaires en position debout et assise. Déterm Personnal Vivo Chez Homme Efforts Exerc Sur Étages Vertébraux Thorac Lombaires En Position Debout Assise 5:5–12
Mitton D, Deschênes S, Laporte S et al (2006) 3D reconstruction of the pelvis from bi-planar radiography. Comput Methods Biomech Biomed Engin 9:1–5. https://doi.org/10.1080/10255840500521786
doi: 10.1080/10255840500521786
pubmed: 16880151
Humbert L, De Guise JA, Aubert B et al (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687. https://doi.org/10.1016/j.medengphy.2009.01.003
doi: 10.1016/j.medengphy.2009.01.003
pubmed: 19230743
Nérot A, Choisne J, Amabile C et al (2015) A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech 48:4322–4326. https://doi.org/10.1016/j.jbiomech.2015.10.044
doi: 10.1016/j.jbiomech.2015.10.044
pubmed: 26592437
Thenard T, Vergari C, Hernandez T et al (2019) Analysis of center of mass and gravity-induced vertebral axial torque on the scoliotic spine by barycentremetry. Spine Deform 7:525–532. https://doi.org/10.1016/j.jspd.2018.11.007
doi: 10.1016/j.jspd.2018.11.007
pubmed: 31202367
Dubousset J, Charpak G, Skalli W et al (2010) Eos: a new imaging system with low dose radiation in standing position for spine and bone & joint disorders. J Musculoskelet Res 13:1–12. https://doi.org/10.1142/S0218957710002430
doi: 10.1142/S0218957710002430
Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine 29:2284–2289. https://doi.org/10.1097/01.brs.0000142224.46796.a7
doi: 10.1097/01.brs.0000142224.46796.a7
pubmed: 15480143
Gajny L, Ebrahimi S, Vergari C et al (2019) Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis. Eur Spine J 28:658–664. https://doi.org/10.1007/s00586-018-5807-6
doi: 10.1007/s00586-018-5807-6
pubmed: 30382429
Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103. https://doi.org/10.1007/s005860050038
doi: 10.1007/s005860050038
pubmed: 9629932
pmcid: 3611230
Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size: a prospective controlled clinical study. Spine 19:1611–1618
doi: 10.1097/00007632-199407001-00010
pubmed: 7939998
Amabile C, Pillet H, Lafage V et al (2016) A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J 25:3666–3674. https://doi.org/10.1007/s00586-016-4552-y
doi: 10.1007/s00586-016-4552-y
pubmed: 27055441
Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34:E599. https://doi.org/10.1097/BRS.0b013e3181aad219
doi: 10.1097/BRS.0b013e3181aad219
pubmed: 19644319
Amabile C, Choisne J, Nérot A et al (2016) Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling. J Biomech 49:1162–1169. https://doi.org/10.1016/j.jbiomech.2016.03.006
doi: 10.1016/j.jbiomech.2016.03.006
pubmed: 26976227
Grados F, Marcelli C, Dargent-Molina P et al (2004) Prevalence of vertebral fractures in French women older than 75 years from the EPIDOS study. Bone 34:362–367. https://doi.org/10.1016/j.bone.2003.11.008
doi: 10.1016/j.bone.2003.11.008
pubmed: 14962815
Melton LJ, Lane AW, Cooper C et al (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119. https://doi.org/10.1007/BF01623271
doi: 10.1007/BF01623271
pubmed: 8481586
Pennec GL, Campana S, Jolivet E et al (2014) CT-based semi-automatic quantification of vertebral fracture restoration. Comput Methods Biomech Biomed Engin 17:1086–1095. https://doi.org/10.1080/10255842.2012.736968
doi: 10.1080/10255842.2012.736968
pubmed: 23113566
Bouxsein ML, Melton LJ, Riggs BL et al (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21:1475–1482. https://doi.org/10.1359/jbmr.060606
doi: 10.1359/jbmr.060606
pubmed: 16939406
Kolta S, Kerkeni S, Travert C et al (2012) Variations in vertebral body dimensions in women measured by 3D-XA: a longitudinal in vivo study. Bone 50:777–783. https://doi.org/10.1016/j.bone.2011.12.005
doi: 10.1016/j.bone.2011.12.005
pubmed: 22207276
Riggs BL, Melton Iii LJ, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res Off J Am Soc Bone Miner Res 19:1945–1954. https://doi.org/10.1359/JBMR.040916
doi: 10.1359/JBMR.040916