Wetting Property Modification of Al
Journal
Langmuir : the ACS journal of surfaces and colloids
ISSN: 1520-5827
Titre abrégé: Langmuir
Pays: United States
ID NLM: 9882736
Informations de publication
Date de publication:
28 Sep 2021
28 Sep 2021
Historique:
pubmed:
15
9
2021
medline:
15
9
2021
entrez:
14
9
2021
Statut:
ppublish
Résumé
In imparting wetting properties, a fabrication process without the addition of new compounds and deposition of coating layers would be the most desirable because it does not introduce additional complexities. Hence, the ion beam irradiation technique is used as it enables the chemistry of materials to be modified through simple adjustments of irradiation parameters such as the type of accelerated particles, beam energy, and fluence. In this study, the hydrophilicity of alumina surfaces was weakened by irradiating He ion beams of different energy levels (200 keV and 20 MeV). These transitions become more pronounced as the total beam fluence increases. In low-energy irradiation, the effect of irradiation is predominant near the surface, and hydrophilicity is weakened by the increase in carbon adsorption and suppression of dissociative adsorption of water molecules owing to the introduction of oxygen vacancies. In contrast, nuclear transmutations are induced by irradiation with high-energy beams. Consequently, fluorine is generated, and hydrophobic functional groups are formed on the surface. By varying the beam conditions, the wetting properties of the target ceramic can be controlled to the desired level, which is required in various industries, via appropriate adjustments of the beam parameters. In addition, the beam irradiation technique may be applicable to all ceramic materials, including lattice oxygen and alumina.
Identifiants
pubmed: 34519211
doi: 10.1021/acs.langmuir.1c01859
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM