Rapid microgeographic evolution in response to climate change.

amphibian countergradient variation evolutionary rescue extinction global warming local adaptation

Journal

Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224

Informations de publication

Date de publication:
11 2021
Historique:
revised: 19 08 2021
received: 28 04 2021
accepted: 27 08 2021
pubmed: 15 9 2021
medline: 21 12 2021
entrez: 14 9 2021
Statut: ppublish

Résumé

Environmental change is predicted to accelerate into the future and will exert strong selection pressure on biota. Although many species may be fated to extinction, others may survive through their capacity to evolve rapidly at highly localized (i.e., microgeographic) scales. Yet, even as new examples have been discovered, the limits to such evolutionary responses have not often been evaluated. One of the first examples of microgeographic variation involved pond populations of wood frogs (Rana sylvatica). Although separated by just tens to hundreds of meters, these populations exhibited countergradient variation in intrinsic embryonic development rates when reared in a common garden. We repeated this experiment 17 years (approximately six to nine generations) later and found that microgeographic variation persists in contemporary populations. Furthermore, we found that contemporary embryos have evolved to develop 14-19% faster than those in 2001. Structural equation models indicate that the predominant cause for this response is likely due to changes in climate over the intervening 17 years. Despite potential for rapid and fine-scale evolution, demographic declines in populations experiencing the greatest changes in climate and habitat imply a limit to the species' ability to mitigate extreme environmental change.

Identifiants

pubmed: 34519355
doi: 10.1111/evo.14350
doi:

Banques de données

Dryad
['10.5061/dryad.08kprr53b']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2930-2943

Informations de copyright

© 2021 The Authors. Evolution © 2021 The Society for the Study of Evolution.

Références

Anderson, M. C. 1964. Studies of the woodland light climate I. The photographic computation of light condition. J. Ecol. 52:27-41.
Arietta, A. Z. A. & D. K. Skelly 2021. Data from: Rapid microgeographic evolution in response to climate change. Evolution. https://doi.org/10.5061/dryad.08kprr53b
Arietta, A. Z. A., L. K. Freidenburg, M. C. Urban, S. B. Rodrigues, A. Rubinstein, and D. K. Skelly. 2020. Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: a 20-year study. Ecography 52:27. https://doi.org/10.1111/ecog.05297
Arrighi, J. M., E. S. Lencer, A. Jukar, D. Park, P. C. Phillips, and R. H. Kaplan. 2013. Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog. BMC Ecol. 13:18.
Barton, K. 2019. MuMIn: multi-model inference. https://CRAN.R-project.org/package=MuMIn
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67:1-48.
Berven, K. A. 1988. Factors affecting variation in reproductive traits within a population of wood frogs (Rana sylvatica). Copeia 1988:605-615.
Berven, K. A. 2009. Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia 2009:328-338.
Berven, K. A., D. E. Gill, and S. J. Smith-Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33:609-623.
Bolnick, D. I., and P. Nosil. 2007. Natural selection in populations subject to a migration load. Evolution 61:2229-2243.
Bradford, D. F. 1990. Incubation time and rate of embryonic development in amphibians: the influence of ovum size, temperature, and reproductive mode. Physiol. Zool. 63:1157-1180.
Bradshaw, W. E., and C. M. Holzapfel. 2001. Genetic shift in photoperiodic response correlated with global warming. PNAS 98:14509-14511.
Brooks, R. T., and M. Hayashi. 2002. Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 22:247-255.
Carlson, S. M., C. J. Cunningham, and P. A. H. Westley. 2014. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29:521-530.
Catullo, R. A., J. Llewelyn, B. L. Phillips, and C. C. Moritz. 2019. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29:R996-R1007.
Claussen, D. L. 1969. Studies on water loss and rehydration in anurans. Physiol. Zool. 42:1-14.
Conover, D. O., and E. T. Schultz. 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10:248-252.
Ficetola, G. F., and F. Bernardi. 2005. Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim. Conserv. 8:33-40.
Filazzola, A., and J. F. Cahill Jr. 2021. Replication in field biology: identifying challenges and proposing solutions. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13657
Frazer, G. W., C. D. Canham, and K. P. Lertzman. 1999. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-color fisheye photographs, users manual and documentation (Version 2.0). Simon Fraser University. http://rem-main.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf
Gahm, K., A. Z. A. Arietta, and D. K. Skelly. 2021. Temperature-mediated trade-off between development and performance in larval wood frogs (Rana sylvatica). J. Exp. Zool. A 335:146-157.
Gaitán-Espitia, J. D., and A. J. Hobday. 2020. Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Global Change Biol. https://doi.org/10.1111/gcb.15359
Georges, A., K. Beggs, J. E. Young, and J. S. Doody. 2005. Modelling development of reptile embryos under fluctuating temperature regimes. Physiol. Biochem. Zool. 78:18-30.
Gienapp, P., C. Teplitsky, J. S. Alho, J. A. Mills, and J. Merilä. 2008. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17:167-178.
Gomulkiewicz, R., and R. D. Holt. 1995. When does evolution by natural selection prevent extinction? Evolution 49:201-207.
Gosner, K. L. 1960. A simplified table for staging Anuran embryos and larvae with notes on identification. Herpetologica 16:183-190.
Hall, J. M., and D. A. Warner. 2020. Ecologically relevant thermal fluctuations enhance offspring fitness: biological and methodological implications for studies of thermal developmental plasticity. J. Exp. Biol. 223(Pt 19). https://doi.org/10.1242/jeb.231902
Hendry, A. P., and M. T. Kinnison. 1999. Perspective: the pace of modern fife: measuring rates of contemporary microevolution. Evolution 53:1637-1653.
Hoffmann, A. A., and C. M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature 470:479-485.
Kawecki, T. J., and D. Ebert. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:1225-1241.
Kinnison, M. T., and A. P. Hendry. 2001. The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112-113:145-164.
Klausmeier, C. A., M. M. Osmond, C. T. Kremer, and E. Litchman. 2020. Ecological limits to evolutionary rescue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375:20190453.
Lefcheck, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol./Br. Ecol. Soc. 7:573-579.
Lent, E., and K. J. Babbitt. 2020. The effects of hydroperiod and predator density on growth, development, and morphology of wood frogs (Rana sylvatica). Aquat. Ecol. 54:369-386.
Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. https://CRAN.R-project.org/doc/Rnews/
Liu, S. S., and X. D. Meng. 2000. Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bull. Entomol. Res. 90:337-347.
Massey, M. D., and J. A. Hutchings. 2021. Thermal variability during ectotherm egg incubation: a synthesis and framework. J. Exp. Zool. A Ecol. Integr. Physiol. 335:59-71.
Meester, L. D., R. Stoks, and K. I. Brans. 2018. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13:372-391.
Merilä, J., and A. P. Hendry. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7:1-14.
Muir, A. P., R. Biek, R. Thomas, and B. K. Mable. 2014. Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol. Ecol. 23:561-574.
Nevo, E., Y.-B. Fu, T. Pavlicek, S. Khalifa, M. Tavasi, and A. Beiles. 2012. Evolution of wild cereals during 28 years of global warming in Israel. PNAS 109:3412-3415.
Niehaus, A. C., R. S. Wilson, and C. E. Franklin. 2006. Short- and long-term consequences of thermal variation in the larval environment of anurans. J. Anim. Ecol. 75:686-692.
Orizaola, G., M. Quintela, and A. Laurila. 2010. Climatic adaptation in an isolated and genetically impoverished amphibian population. Ecography 33:730-737.
Radchuk, V., T. Reed, C. Teplitsky, M. van de Pol, A. Charmantier, C. Hassall, P. Adamík, F. Adriaensen, M. P. Ahola, P. Arcese et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10:3109.
Razgour, O., B. Forester, J. B. Taggart, M. Bekaert, J. Juste, C. Ibáñez, S. J. Puechmaille, R. Novella-Fernandez, A. Alberdi, and S. Manel. 2019. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. PNAS 116:10418-10423.
Reznick, D. N., J. Losos, and J. Travis. 2019. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22:233-244.
Richardson, J. L., M. C. Urban, D. I. Bolnick, and D. K. Skelly. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29:165-176.
Richter-Boix, A., M. Tejedo, and E. L. Rezende. 2011. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 1:15-25.
Rowland, F., Schyling, E., Richardson, J., Arietta, A. Z. A., Rodrigues, S., Rubinstein, A., Freidenburg, L. K., Urban, M. C., Skelly, D. K., and M. Benard. (in review). Asynchrony, density dependence, and persistence in amphibian populations. Ecology.
Sala, O. E., F. S. Chapin 3rd, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig et al. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.
Schiffers, K., E. C. Bourne, S. Lavergne, W. Thuiller, and J. M. J. Travis. 2013. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 3681610. 20120083.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-675.
Skelly, D. K. 2004. Microgeographic countergradient variation in the wood frog, Rana sylvatica. Evolution 58:160-165.
Stockwell, C. A., A. P. Hendry, and M. T. Kinnison. 2003. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18:94-101.
Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook. 2016. Daymet: daily surface weather data on a 1-km grid for North America, Version 3. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1328
Urban, M. C. 2015. Climate change. Accelerating extinction risk from climate change. Science 348:571-573.
Werner, E. E., D. K. Skelly, R. A. Relyea, and K. L. Yurewicz. 2007. Amphibian species richness across environmental gradients. Oikos 116:1697-1712.
Wiens, J. A., D. Stralberg, D. Jongsomjit, C. A. Howell, and M. A. Snyder. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. PNAS 106(Suppl 2), 19729-19736.

Auteurs

A Z Andis Arietta (AZA)

School of the Environment, Yale University, New Haven, Connecticut, 06520.

David K Skelly (DK)

School of the Environment, Yale University, New Haven, Connecticut, 06520.

Articles similaires

Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Climate Change Social Media Humans Communication Canada
Gene Editing Climate Change Africa South of the Sahara Crops, Agricultural Agriculture

Classifications MeSH