Carbon reservoir perturbations induced by Deccan volcanism: Stable isotope and biomolecular perspectives from shallow marine environment in Eastern India.
Cretaceous-Paleogene Boundary
Rajahmundry
environmental stress
inter-trappean
n-alkane
organic matter
Journal
Geobiology
ISSN: 1472-4669
Titre abrégé: Geobiology
Pays: England
ID NLM: 101185472
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
12
12
2020
accepted:
27
08
2021
pubmed:
15
9
2021
medline:
1
3
2022
entrez:
14
9
2021
Statut:
ppublish
Résumé
The Deccan Traps in Western India is hypothesized to have caused significant fluctuations in climatic condition and organic matter (OM) productivity across the Cretaceous-Paleogene Boundary (K/PgB). The periodic release of large amounts of volatiles into the atmosphere is thought to drive these changes. Yet, direct impact of volcanism on the carbon cycle and ecosystem remains relatively unconstrained. For the first time, we attempt to trace changes in both marine and terrestrial carbon reservoirs from pre- and intervolcanic sedimentary units (infra- and inter-trappeans respectively) from Rajahmundry, ~1500 km SE of main eruption sites in Western India. Molecular level characterization of OM and stable isotope composition of carbonates (δ
Substances chimiques
Carbon Isotopes
0
Isotopes
0
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22-40Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Arens, N. C., & Jahren, A. H. (2002). Chemostratigraphic correlation of four fossil-bearing sections in southwestern North Dakota. Geological Society of America Special Paper, 361, 75-93.
Arinobu, T., Ishiwatari, R., Kaiho, K., & Lamolda, M. A. (1999). Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain. Geology, 27(8), 723-726. https://doi.org/10.1130/0091-7613(1999)027<0723:SOPPAH>2.3.CO;2
Bajpai, S., Holmes, J., Bennett, C., Mandal, N., & Khosla, A. (2013). Palaeoenvironment of Northwestern India during the Late Cretaceous Deccan volcanic episode from trace-element and stable-isotope geochemistry of intertrappean ostracod shells. Global and Planetary Change, 107, 82-90. https://doi.org/10.1016/j.gloplacha.2013.04.011
Baksi, A. K. (2014). The Deccan Trap-Cretaceous-Paleogene boundary connection; New 40Ar/39Ar ages and critical assessment of existing argon data pertinent to this hypothesis. Journal of Asian Earth Sciences, 84, 9-23. https://doi.org/10.1016/j.jseaes.2013.08.021
Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11), 3123-3137. https://doi.org/10.1016/0016-7037(90)90128-8
Barnet, J. S., Littler, K., Kroon, D., Leng, M. J., Westerhold, T., Röhl, U., & Zachos, J. C. (2018). A new high-resolution chronology for the late Maastrichtian warming event: Establishing robust temporal links with the onset of Deccan volcanism. Geology, 46(2), 147-150. https://doi.org/10.1130/G39771.1
Basu, S., Ghosh, S., & Sanyal, P. (2019). Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: Inferences from a global compilation. Global and Planetary Change, 176, 123-131. https://doi.org/10.1016/j.gloplacha.2019.02.002
Basu, S., Sanyal, P., Pillai, A. A., & Ambili, A. (2019). Response of grassland ecosystem to monsoonal precipitation variability during the Mid-Late Holocene: Inferences based on molecular isotopic records from Banni grassland, western India. PLoS One, 14(4), e0212743. https://doi.org/10.1371/journal.pone.0212743
Beerling, D. J., Lomax, B. H., Royer, D. L., Upchurch, G. R., & Kump, L. R. (2002). An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7836-7840. https://doi.org/10.1073/pnas.122573099
Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D., & Schmidt, D. N. (2016). Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology, 44(4), 287-290. https://doi.org/10.1130/G37581.1
Boehm, P. D. (1987). Transport and transformation processes regarding hydrocarbon and metal pollutants in offshore sedimentary environments. In D. F. Boesch, & N. N. Rabalais (Eds.), Long-term environmental effects of offshore oil and gas development (pp. 233-286). CRC Press.
Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117, 161-179. https://doi.org/10.1016/j.gca.2013.04.016
Cerling, T. E. (1991). Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291(4), 377-400. https://doi.org/10.2475/ajs.291.4.377
Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S., Dawson, T. E., Griffiths, H. G., Farquhar, G. D., & Wright, I. J. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36(3), 199-213. https://doi.org/10.1071/FP08216
Chenet, A-L., Courtillot, V., Fluteau, F., Gérard, M., Quidelleur, X., Khadri, S. F. R., Subbarao, K. V., Thordarson, T. (2009). Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research, 114(B6). http://dx.doi.org/10.1029/2008jb005644
Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J. J., & Cappetta, H. (1986). Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth and Planetary Science Letters, 80(3-4), 361-374. https://doi.org/10.1016/0012-821X(86)90118-4
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., & Lindinger, M. (1998). Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science, 282(5387), 276-279.
Didyk, B. M., Simoneit, B. R. T., Brassell, S. T., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650), 216-222.
Diefendorf, A. F., Freeman, K. H., Wing, S. L., Currano, E. D., & Mueller, K. E. (2015). Paleogene plants fractionated carbon isotopes similar to modern plants. Earth and Planetary Science Letters, 429, 33-44. https://doi.org/10.1016/j.epsl.2015.07.029
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 5738-5743. https://doi.org/10.1073/pnas.0910513107
Eckmeier, E., & Wiesenberg, G. L. (2009). Short-chain n-alkanes (C16-20) in ancient soil are useful molecular markers for prehistoric biomass burning. Journal of Archaeological Science, 36(7), 1590-1596. https://doi.org/10.1016/j.jas.2009.03.021
Fantasia, A., Adatte, T., Spangenberg, J. E., & Font, E. (2016). Palaeo-environmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 165-180. https://doi.org/10.1016/j.palaeo.2015.06.032
Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40(1), 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443
Fendley, I. M., Mittal, T., Sprain, C. J., Marvin-Di Pasquale, M., Tobin, T. S., & Renne, P. R. (2019). Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth and Planetary Science Letters, 524, 115721. https://doi.org/10.1016/j.epsl.2019.115721
Font, E., Ponte, J., Adatte, T., Fantasia, A., Florindo, F., Abrajevitch, A., & Mirao, J. (2016). Tracing acidification induced by Deccan Phase 2 volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 181-197. https://doi.org/10.1016/j.palaeo.2015.06.033
Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad, V., Berner, Z., & Fleitmann, D. (2011). Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth and Planetary Science Letters, 310(3-4), 272-285. https://doi.org/10.1016/j.epsl.2011.08.015
Ghosh, S., Sanyal, P., & Kumar, R. (2017). Evolution of C4 plants and controlling factors: Insight from n-alkane isotopic values of NW Indian Siwalik paleosols. Organic Geochemistry, 110, 110-121. https://doi.org/10.1016/j.orggeochem.2017.04.009
Goldsmith, Y., Polissar, P. J., deMenocal, P. B., & Broecker, W. S. (2019). Leaf wax δD and δ13C in soils record hydrological and environmental information across a climatic gradient in Israel. Journal of Geophysical Research: Biogeosciences, 124(9), 2898-2916.
Govindan, A. (1981). Foraminifera from the infra- and intertrappean subsurface sediments of Narsapur Well-1 and age of the Deccan Trap flows. Proceedings of the 9th Indian Colloquium of Micropalaeontology and Stratigraphy, 81-93. https://ci.nii.ac.jp/naid/10009260670/en/
Gradstein, F. M., Ogg, J. G., Schmitz, M. B., & Ogg, G. M. (2012). The geologic time scale. Elsevier.
Hansell, D. A. (2013). Recalcitrant dissolved organic carbon fractions. Annual Review of Marine Science, 5, 421-445. https://doi.org/10.1146/annurev-marine-120710-100757
Hayes, J. M. (2001). Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Reviews in Mineralogy and Geochemistry, 43(1), 225-277. https://doi.org/10.2138/gsrmg.43.1.225
Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., & Bralower, T. J. (2020). On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475), 266-272.
Hull P. M., Norris R. D. (2011). Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography, 26, PA3205. https://doi.org/10.1029/2010PA002082
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., & Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Reviews Microbiology, 8(8), 593-599. https://doi.org/10.1038/nrmicro2386
Jones, M. T., Jerram, D. A., Svensen, H. H., & Grove, C. (2016). The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 4-21. https://doi.org/10.1016/j.palaeo.2015.06.042
Keller, G. (2014). Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect. Geological Society of America Special Papers, 505, 57-89.
Keller, G., Adatte, T., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., & Jaiprakash, B. C. (2012). Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth and Planetary Science Letters, 341, 211-221. https://doi.org/10.1016/j.epsl.2012.06.021
Keller, G., Adatte, T., Gardin, S., Bartolini, A., & Bajpai, S. (2008). Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India. Earth and Planetary Science Letters, 268(3-4), 293-311. https://doi.org/10.1016/j.epsl.2008.01.015
Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., & Adatte, T. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India, 78(5), 399-428. https://doi.org/10.1007/s12594-011-0107-3
Lakshminarayana, G. (2002). Evolution in Basin Fill Style During the Mesozoic Gondwana Continental Break-up in the Godavari Triple Junction, SE India. Gondwana Research, 5(1), 227-244. http://dx.doi.org/10.1016/s1342-937x(05)70906-0
Lakshminarayana, G., Manikyamba, C., Khanna, T. C., Kanakdande, P. P., & Raju, K. (2010). New observations on Rajahmundry Traps of the Krishna-Godavari Basin. Journal of the Geological Society of India, 75(6), 807-819. https://doi.org/10.1007/s12594-010-0071-3
Lakshminarayana, G., Murti, K. S., & Rama Rao, M. (1992). Stratigraphy of the Upper Gondwana sediments in the Krishna-Godavari coastal tract, Andhra Pradesh. Journal of the Geological Society of India, 39, 39-49.
Landmeyer, J. E., Vroblesky, D. A., & Chapelle, F. H. (1996). Stable carbon isotope evidence of biodegradation zonation in a shallow jet-fuel contaminated aquifer. Environmental Science & Technology, 30(4), 1120-1128. https://doi.org/10.1021/es950325t
Liu, J., & An, Z. (2018). A hierarchical framework for disentangling different controls on leaf wax δD n-alkane values in terrestrial higher plants. Quaternary Science Reviews, 201, 409-417.
Love, G. D., Bowden, S. A., Jahnke, L. L., Snape, C. E., Campbell, C. N., Day, J. G., & Summons, R. E. (2005). A catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Organic Geochemistry, 36(1), 63-82. https://doi.org/10.1016/j.orggeochem.2004.07.010
Lyons, S. L., Karp, A. T., Bralower, T. J., Grice, K., Schaefer, B., Gulick, S. P. S., Morgan, J. V., & Freeman, K. H. (2020). Organic matter from the Chicxulub crater exacerbated the K-Pg impact winter. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25327-25334. https://doi.org/10.1073/pnas.2004596117
Malarkodi, N., & Mallikarjuna, U. B. (2010). Sequence stratigraphy of Soma quarry section, near Gowripatnam, Rajahmundry area, Andhra Pradesh. Journal of the Geological Society of India, 76(2), 111-118. https://doi.org/10.1007/s12594-010-0089-6
Mallick, S., Bardhan, S., Das, S. S., Paul, S., & Goswami, P. (2014). Naticid drilling predation on gastropod assemblages across the K-T boundary in Rajahmundry, India: New evidence for escalation hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 411, 216-228. https://doi.org/10.1016/j.palaeo.2014.07.001
Mani, D., Patil, D. J., Kalpana, M. S., & Dayal, A. M. (2012). Evaluation of hydrocarbon prospects using surface geochemical data with constraints from geological and geophysical observations: Saurashtra Basin. India. Journal of Petroleum Geology, 35(1), 67-83. https://doi.org/10.1111/j.1747-5457.2012.00519.x
Marzi, R., Torkelson, B. E., & Olson, R. K. (1993). A revised carbon preference index. Organic Geochemistry, 20(8), 1303-1306. https://doi.org/10.1016/0146-6380(93)90016-5
McLean, D. M. (1985). Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research, 6(3), 235-259. https://doi.org/10.1016/0195-6671(85)90048-5
Meyer, K. W., Petersen, S. V., Lohmann, K. C., Blum, J. D., Washburn, S. J., Johnson, M. W., Gleason, J. D., Kurz, A. Y., & Winkelstern, I. Z. (2019). Biogenic carbonate mercury and marine temperature records reveal global influence of Late Cretaceous Deccan Traps. Nature Communications, 10(1), 1-8. https://doi.org/10.1038/s41467-019-13366-0
Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R., & McKee, M. L. (2019). No evidence for a large atmospheric CO2 spike across the Cretaceous-Paleogene boundary. Geophysical Research Letters, 46(6), 3462-3472.
Mohr, R. C., Tobin, T. S., Petersen, S. V., Dutton, A., & Oliphant, E. (2020). Subannual stable isotope records reveal climate warming and seasonal anoxia associated with two extinction intervals across the Cretaceous-Paleogene boundary on Seymour Island. Antarctica. Geology, 48(11), 1131-1136. https://doi.org/10.1130/G47758.1
Montañez, I. P. (2013). Modern soil system constraints on reconstructing deep-time atmospheric CO2. Geochimica et Cosmochimica Acta, 101, 57-75. https://doi.org/10.1016/j.gca.2012.10.012
Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015). Polycyclic aromatic hydrocarbon compound excursions and K/Pg transition in the late Cretaceous-early Palaeogene succession of the Um Sohryngkew river section, Meghalaya. Current Science, 109(6), 1140-1150. https://doi.org/10.18520/v109/i6/1140-1150
Peters, K. E., Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide (Vol. 1). Cambridge University Press.
Prasad, G. V. R., & Sahni, A. (2014). Vertebrate fauna from the Deccan volcanic province: Response to volcanic activity. Geological Society of America Special Papers, 505, 193-211. http://dx.doi.org/10.1130/2014.2505(09)
Roy, B., Roy, S., Goyal, K., Ghosh, S., & Sanyal, P. (2021). Biomarker and Carbon Isotopic Evidence of Marine Incursions in the Himalayan Foreland Basin During Its Overfilled Stage. Paleoceanography and Paleoclimatology, 36(5), e2020PA004083. https://doi.org/10.1029/2020PA004083
Sachse, D., Radke, J., & Gleixner, G. (2006). δD values of individual n-alkanes from terrestrial plants along a climatic gradient - Implications for the sedimentary biomarker record. Organic Geochemistry, 37(4), 469-483. https://doi.org/10.1016/j.orggeochem.2005.12.003
Saito, T., Yamanoi, T., & Kaiho, K. (1986). End-Cretaceous devastation of terrestrial flora in the boreal Far East. Nature, 323(6085), 253-255.
Saltzman, M. R., & Thomas, E. (2012). Carbon isotope stratigraphy. The Geologic Time Scale, 1, 207-232.
Samant, B., & Mohabey, D. M. (2014). Deccan volcanic eruptions and their impact on flora: Palynological evidence. Geological Society of America Special Papers, 505.
Sarangi, V., Kumar, A., Sanyal, P. (2019). Effect of pedogenesis on the stable isotopic composition of calcretes andn-alkanes: Implications for palaeoenvironmental reconstruction. Sedimentology, 66(5), 1560-1579. http://dx.doi.org/10.1111/sed.12543
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., & Khadri, S. F. (2019). U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429), 862-866.
Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H., & Damsté, J. S. S. (2007). The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic. Earth and Planetary Science Letters, 258(3-4), 581-592. https://doi.org/10.1016/j.epsl.2007.04.024
Schubert, B. A., & Jahren, A. H. (2012). The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochimica et Cosmochimica Acta, 96, 29-43. https://doi.org/10.1016/j.gca.2012.08.003
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., & Collins, G. S. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970), 1214-1218.
Self, S., Widdowson, M., Thordarson, T., & Jay, A. E. (2006). Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 248(1-2), 518-532. https://doi.org/10.1016/j.epsl.2006.05.041
Sepulveda, J., Alegret, L., Thomas, E., Haddad, E., Cao, C., & Summons, R. E. (2019). Stable isotope constraints on marine productivity across the Cretaceous-Paleogene mass extinction. Paleoceanography and Paleoclimatology, 34(7), 1195-1217. https://doi.org/10.1029/2018PA003442
Sheth, H. C., Pande, K., & Bhutani, R. (2001). 40Ar-39Ar ages of Bombay trachytes: Evidence for a Palaeocene phase of Deccan volcanism. Geophysical Research Letters, 28(18), 3513-3516.
Sial, A. N., Chen, J., Lacerda, L. D., Frei, R., Tewari, V. C., Pandit, M. K., Gaucher, C., Ferreira, V. P., Cirilli, S., Peralta, S., Korte, C., Barbosa, J. A., & Pereira, N. S. (2016). Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research, 66, 60-81. https://doi.org/10.1016/j.cretres.2016.05.006
Smith, F. A., Wing, S. L., & Freeman, K. H. (2007). Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change. Earth and Planetary Science Letters, 262(1-2), 50-65. https://doi.org/10.1016/j.epsl.2007.07.021
Sprain, C. J., Renne, P. R., Clemens, W. A., & Wilson, G. P. (2018). Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. Geological Society of America Bulletin, 130(9-10), 1615-1644. https://doi.org/10.1130/B31890.1
Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363(6429), 866-870.
Swart, P. K. (2015). The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62(5), 1233-1304. https://doi.org/10.1111/sed.12205
Vajda, V., & Bercovici, A. (2014). The global vegetation pattern across the Cretaceous-Paleogene mass extinction interval: A template for other extinction events. Global and Planetary Change, 122, 29-49. https://doi.org/10.1016/j.gloplacha.2014.07.014
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., & Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1-3), 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
Zhang, L., Wang, C., Wignall, P. B., Kluge, T., Wan, X., Wang, Q., & Gao, Y. (2018). Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology, 46(3), 271-274. https://doi.org/10.1130/G39992.1