Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy- and glycophagy-based energy metabolism.
AMP-Activated Protein Kinases
/ metabolism
Adenosine Triphosphate
/ metabolism
Animals
Energy Metabolism
Heart Injuries
Mice
Mitophagy
Myocardial Infarction
/ drug therapy
Myocytes, Cardiac
Pentacyclic Triterpenes
/ pharmacology
Phosphatidylinositol 3-Kinases
/ metabolism
Proto-Oncogene Proteins c-akt
/ metabolism
AMPK signaling
asiatic acid
energy metabolism
glycophagy
mitophagy
myocardial infarction
Journal
Acta pharmacologica Sinica
ISSN: 1745-7254
Titre abrégé: Acta Pharmacol Sin
Pays: United States
ID NLM: 100956087
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
02
03
2021
accepted:
10
08
2021
pubmed:
16
9
2021
medline:
7
6
2022
entrez:
15
9
2021
Statut:
ppublish
Résumé
Myocardial infarction (MI) causes disturbances in myocardial energy metabolism, ultimately leading to a poor prognosis. Cytosolic glycogen autophagy (glycophagy) and mitochondrial autophagy (mitophagy) are upregulated in MI to optimize energy metabolism but to a limited extent. Asiatic acid (AA), a pentacyclic triterpene derived from the traditional Chinese herb Centella asiatica, displays anti-inflammatory, antioxidant, and antiapoptotic activities. AA has been found to alleviate focal cerebral and liver ischemic injury by reversing mitochondrial dysfunction. In this study, we investigated whether AA exerted cardioprotective effects against MI by activating glycophagy and mitophagy to improve the energy balance. In vitro cardioprotective effects were examined in neonatal mouse cardiomyocytes subjected to oxygen-glucose deprivation for 12 h. Treatment with AA (2-50 μM) significantly increased cell viability and improved the energy metabolism evidenced by increased ATP level and phosphocreatine/ATP ratio. In vivo cardioprotective effects were studied in a mouse model of MI. Administration of AA (5-125 mg·kg
Identifiants
pubmed: 34522006
doi: 10.1038/s41401-021-00763-9
pii: 10.1038/s41401-021-00763-9
pmc: PMC9160258
doi:
Substances chimiques
Pentacyclic Triterpenes
0
Adenosine Triphosphate
8L70Q75FXE
asiatic acid
9PA5A687X5
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
AMP-Activated Protein Kinases
EC 2.7.11.31
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1395-1407Informations de copyright
© 2021. The Author(s), under exclusive licence to CPS and SIMM.
Références
Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.
pubmed: 20558366
doi: 10.1056/NEJMoa0908610
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.
pubmed: 21160056
doi: 10.1161/CIR.0b013e3182009701
Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116:1477–90.
pubmed: 25858070
pmcid: 4419704
doi: 10.1161/CIRCRESAHA.116.303790
Lorentzon M, Ramunddal T, Bollano E, Soussi B, Waagstein F, Omerovic E. In vivo effects of myocardial creatine depletion on left ventricular function, morphology, and energy metabolism–consequences in acute myocardial infarction. J Card Fail. 2007;13:230–7.
pubmed: 17448422
doi: 10.1016/j.cardfail.2006.11.012
Schaneberg BT, Mikell JR, Bedir E, Khan IA. An improved HPLC method for quantitative determination of six triterpenes in Centella asiatica extracts and commercial products. Pharmazie. 2003;58:381–4.
pubmed: 12856998
Tsao SM, Yin MC. Antioxidative and antiinflammatory activities of asiatic acid, glycyrrhizic acid, and oleanolic acid in human bronchial epithelial cells. J Agric Food Chem. 2015;63:3196–204.
pubmed: 25779760
doi: 10.1021/acs.jafc.5b00102
Lu Y, Kan H, Wang Y, Wang D, Wang X, Gao J, et al. Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism. Toxicol Appl Pharmacol. 2018;338:214–23.
doi: 10.1016/j.taap.2017.11.023
Chao PC, Yin MC, Mong MC. Anti-apoptotic and anti-glycative effects of asiatic acid in the brain of D-galactose treated mice. Food Funct. 2015;6:542–8.
pubmed: 25504333
doi: 10.1039/C4FO00862F
Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9:289–96.
pubmed: 10356407
Grimaldi R, De Ponti F, D’Angelo L, Caravaggi M, Guidi G, Lecchini S, et al. Pharmacokinetics of the total triterpenic fraction of Centella asiatica after single and multiple administrations to healthy volunteers. A new assay for asiatic acid. J Ethnopharmacol. 1990;28:235–41.
pubmed: 2329813
doi: 10.1016/0378-8741(90)90033-P
Lee KY, Bae ON, Serfozo K, Hejabian S, Moussa A, Reeves M, et al. Asiatic acid attenuates infarct volume, mitochondrial dysfunction, and matrix metalloproteinase-9 induction after focal cerebral ischemia. Stroke. 2012;43:1632–8.
pubmed: 22511009
pmcid: 3361557
doi: 10.1161/STROKEAHA.111.639427
Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111:1208–21.
pubmed: 23065344
pmcid: 3538875
doi: 10.1161/CIRCRESAHA.112.265819
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.
pubmed: 21258367
pmcid: 3987946
doi: 10.1038/ncb2152
Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32:S7–12. Suppl 4.
doi: 10.1038/ijo.2008.116
Fritzen AM, Frosig C, Jeppesen J, Jensen TE, Lundsgaard AM, Serup AK, et al. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cell Signal. 2016;28:663–74.
pubmed: 26976209
doi: 10.1016/j.cellsig.2016.03.005
Zhao H, Tang M, Liu M, Chen L. Glycophagy: an emerging target in pathology. Clin Chim Acta. 2018;484:298–303.
pubmed: 29894781
doi: 10.1016/j.cca.2018.06.014
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pr. 2006;202:631–8.
doi: 10.1016/j.prp.2006.04.001
Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses–macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol. 2015;308:H1194–204.
pubmed: 25747748
pmcid: 4436984
doi: 10.1152/ajpheart.00002.2015
Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem. 2010;285:34960–71.
pubmed: 20810658
pmcid: 2966110
doi: 10.1074/jbc.M110.150839
Jiang S, Wells CD, Roach PJ. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun. 2011;413:420–5.
pubmed: 21893048
pmcid: 3411280
doi: 10.1016/j.bbrc.2011.08.106
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, et al. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc. 2013;2:e000191.
pubmed: 23608608
pmcid: 3647266
doi: 10.1161/JAHA.113.000191
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy. 2017;13:1754–66.
pubmed: 28820284
pmcid: 5640199
doi: 10.1080/15548627.2017.1357792
Yang H, Shen H, Li J, Guo LW. SIGMAR1/Sigma-1 receptor ablation impairs autophagosome clearance. Autophagy. 2019;15:1539–57.
pubmed: 30871407
pmcid: 6693456
doi: 10.1080/15548627.2019.1586248
Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp. 2017;122:55353.
Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;122:795–801.
pubmed: 1877457
doi: 10.1016/0002-8703(91)90527-O
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.
pubmed: 28974774
doi: 10.1038/nrm.2017.95
Mellor KM, Varma U, Stapleton DI, Delbridge LM. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol. 2014;306:H1240–5.
pubmed: 24561860
doi: 10.1152/ajpheart.00059.2014
Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J Biol Chem. 2015;290:5592–605.
pubmed: 25561726
pmcid: 4342473
doi: 10.1074/jbc.M114.616714
Reichelt ME, Mellor KM, Curl CL, Stapleton D, Delbridge LM. Myocardial glycophagy - a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol. 2013;65:67–75.
pubmed: 24080183
doi: 10.1016/j.yjmcc.2013.09.014
Cheng W, Wu P, Du Y, Wang Y, Zhou N, Ge Y, et al. Puerarin improves cardiac function through regulation of energy metabolism in streptozotocin-nicotinamide induced diabetic mice after myocardial infarction. Biochem Biophys Res Commun. 2015;463:1108–14.
pubmed: 26079885
doi: 10.1016/j.bbrc.2015.06.067
Lim SH, Lee J. Xyloglucan intake attenuates myocardial injury by inhibiting apoptosis and improving energy metabolism in a rat model of myocardial infarction. Nutr Res. 2017;45:19–29.
pubmed: 29037328
doi: 10.1016/j.nutres.2017.07.003
Qiu F, Zhang H, Yuan Y, Liu Z, Huang B, Miao H, et al. A decrease of ATP production steered by PEDF in cardiomyocytes with oxygen-glucose deprivation is associated with an AMPK-dependent degradation pathway. Int J Cardiol. 2018;257:262–71.
pubmed: 29361350
doi: 10.1016/j.ijcard.2018.01.034
Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57–64.
pubmed: 26889217
doi: 10.3892/etm.2015.2871
Dai Y, Wang Z, Quan M, Lv Y, Li Y, Xin HB, et al. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. Drug Des Devel Ther. 2018;12:3573–82.
pubmed: 30498333
pmcid: 6207266
doi: 10.2147/DDDT.S175116
Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M. Autophagy, its mechanisms and regulation: Implications in neurodegenerative diseases. Ageing Res Rev. 2017;40:64–74.
pubmed: 28923312
doi: 10.1016/j.arr.2017.09.005
Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells. 2010;15:923–33.
pubmed: 20670274
doi: 10.1111/j.1365-2443.2010.01433.x
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.
pubmed: 21189453
pmcid: 3060413
doi: 10.4161/auto.7.3.14487
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.
pubmed: 17332429
doi: 10.1161/01.RES.0000261924.76669.36
Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012;125:1134–46.
pubmed: 22294621
pmcid: 3337789
doi: 10.1161/CIRCULATIONAHA.111.078212
Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, et al. Beneficial effects of mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 2009;54:2435–46.
pubmed: 20082935
doi: 10.1016/j.jacc.2009.08.031
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.
pubmed: 21205641
doi: 10.1126/science.1196371
Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy. 2015;11:1341–57.
pubmed: 26103054
pmcid: 4590606
doi: 10.1080/15548627.2015.1061849
Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci. 2012;125:1488–99.
pubmed: 22275429
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–14.
pubmed: 26266977
pmcid: 5018156
doi: 10.1038/nature14893
Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9:1663–76.
pubmed: 23787782
pmcid: 4028332
doi: 10.4161/auto.24135
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 2012;287:19094–104.
pubmed: 22505714
pmcid: 3365942
doi: 10.1074/jbc.M111.322933
Nielsen J, Ortenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38:91–9.
pubmed: 23438218
doi: 10.1139/apnm-2012-0184
Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19:946–57.
pubmed: 24664781
doi: 10.1007/s10495-014-0977-0
Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physio. 2017;44:946–53.
doi: 10.1111/1440-1681.12791