Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy- and glycophagy-based energy metabolism.


Journal

Acta pharmacologica Sinica
ISSN: 1745-7254
Titre abrégé: Acta Pharmacol Sin
Pays: United States
ID NLM: 100956087

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 02 03 2021
accepted: 10 08 2021
pubmed: 16 9 2021
medline: 7 6 2022
entrez: 15 9 2021
Statut: ppublish

Résumé

Myocardial infarction (MI) causes disturbances in myocardial energy metabolism, ultimately leading to a poor prognosis. Cytosolic glycogen autophagy (glycophagy) and mitochondrial autophagy (mitophagy) are upregulated in MI to optimize energy metabolism but to a limited extent. Asiatic acid (AA), a pentacyclic triterpene derived from the traditional Chinese herb Centella asiatica, displays anti-inflammatory, antioxidant, and antiapoptotic activities. AA has been found to alleviate focal cerebral and liver ischemic injury by reversing mitochondrial dysfunction. In this study, we investigated whether AA exerted cardioprotective effects against MI by activating glycophagy and mitophagy to improve the energy balance. In vitro cardioprotective effects were examined in neonatal mouse cardiomyocytes subjected to oxygen-glucose deprivation for 12 h. Treatment with AA (2-50 μM) significantly increased cell viability and improved the energy metabolism evidenced by increased ATP level and phosphocreatine/ATP ratio. In vivo cardioprotective effects were studied in a mouse model of MI. Administration of AA (5-125 mg·kg

Identifiants

pubmed: 34522006
doi: 10.1038/s41401-021-00763-9
pii: 10.1038/s41401-021-00763-9
pmc: PMC9160258
doi:

Substances chimiques

Pentacyclic Triterpenes 0
Adenosine Triphosphate 8L70Q75FXE
asiatic acid 9PA5A687X5
Proto-Oncogene Proteins c-akt EC 2.7.11.1
AMP-Activated Protein Kinases EC 2.7.11.31

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1395-1407

Informations de copyright

© 2021. The Author(s), under exclusive licence to CPS and SIMM.

Références

Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.
pubmed: 20558366 doi: 10.1056/NEJMoa0908610
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.
pubmed: 21160056 doi: 10.1161/CIR.0b013e3182009701
Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116:1477–90.
pubmed: 25858070 pmcid: 4419704 doi: 10.1161/CIRCRESAHA.116.303790
Lorentzon M, Ramunddal T, Bollano E, Soussi B, Waagstein F, Omerovic E. In vivo effects of myocardial creatine depletion on left ventricular function, morphology, and energy metabolism–consequences in acute myocardial infarction. J Card Fail. 2007;13:230–7.
pubmed: 17448422 doi: 10.1016/j.cardfail.2006.11.012
Schaneberg BT, Mikell JR, Bedir E, Khan IA. An improved HPLC method for quantitative determination of six triterpenes in Centella asiatica extracts and commercial products. Pharmazie. 2003;58:381–4.
pubmed: 12856998
Tsao SM, Yin MC. Antioxidative and antiinflammatory activities of asiatic acid, glycyrrhizic acid, and oleanolic acid in human bronchial epithelial cells. J Agric Food Chem. 2015;63:3196–204.
pubmed: 25779760 doi: 10.1021/acs.jafc.5b00102
Lu Y, Kan H, Wang Y, Wang D, Wang X, Gao J, et al. Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism. Toxicol Appl Pharmacol. 2018;338:214–23.
doi: 10.1016/j.taap.2017.11.023
Chao PC, Yin MC, Mong MC. Anti-apoptotic and anti-glycative effects of asiatic acid in the brain of D-galactose treated mice. Food Funct. 2015;6:542–8.
pubmed: 25504333 doi: 10.1039/C4FO00862F
Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9:289–96.
pubmed: 10356407
Grimaldi R, De Ponti F, D’Angelo L, Caravaggi M, Guidi G, Lecchini S, et al. Pharmacokinetics of the total triterpenic fraction of Centella asiatica after single and multiple administrations to healthy volunteers. A new assay for asiatic acid. J Ethnopharmacol. 1990;28:235–41.
pubmed: 2329813 doi: 10.1016/0378-8741(90)90033-P
Lee KY, Bae ON, Serfozo K, Hejabian S, Moussa A, Reeves M, et al. Asiatic acid attenuates infarct volume, mitochondrial dysfunction, and matrix metalloproteinase-9 induction after focal cerebral ischemia. Stroke. 2012;43:1632–8.
pubmed: 22511009 pmcid: 3361557 doi: 10.1161/STROKEAHA.111.639427
Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111:1208–21.
pubmed: 23065344 pmcid: 3538875 doi: 10.1161/CIRCRESAHA.112.265819
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.
pubmed: 21258367 pmcid: 3987946 doi: 10.1038/ncb2152
Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32:S7–12. Suppl 4.
doi: 10.1038/ijo.2008.116
Fritzen AM, Frosig C, Jeppesen J, Jensen TE, Lundsgaard AM, Serup AK, et al. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cell Signal. 2016;28:663–74.
pubmed: 26976209 doi: 10.1016/j.cellsig.2016.03.005
Zhao H, Tang M, Liu M, Chen L. Glycophagy: an emerging target in pathology. Clin Chim Acta. 2018;484:298–303.
pubmed: 29894781 doi: 10.1016/j.cca.2018.06.014
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pr. 2006;202:631–8.
doi: 10.1016/j.prp.2006.04.001
Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses–macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol. 2015;308:H1194–204.
pubmed: 25747748 pmcid: 4436984 doi: 10.1152/ajpheart.00002.2015
Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem. 2010;285:34960–71.
pubmed: 20810658 pmcid: 2966110 doi: 10.1074/jbc.M110.150839
Jiang S, Wells CD, Roach PJ. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun. 2011;413:420–5.
pubmed: 21893048 pmcid: 3411280 doi: 10.1016/j.bbrc.2011.08.106
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, et al. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc. 2013;2:e000191.
pubmed: 23608608 pmcid: 3647266 doi: 10.1161/JAHA.113.000191
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy. 2017;13:1754–66.
pubmed: 28820284 pmcid: 5640199 doi: 10.1080/15548627.2017.1357792
Yang H, Shen H, Li J, Guo LW. SIGMAR1/Sigma-1 receptor ablation impairs autophagosome clearance. Autophagy. 2019;15:1539–57.
pubmed: 30871407 pmcid: 6693456 doi: 10.1080/15548627.2019.1586248
Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp. 2017;122:55353.
Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;122:795–801.
pubmed: 1877457 doi: 10.1016/0002-8703(91)90527-O
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.
pubmed: 28974774 doi: 10.1038/nrm.2017.95
Mellor KM, Varma U, Stapleton DI, Delbridge LM. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol. 2014;306:H1240–5.
pubmed: 24561860 doi: 10.1152/ajpheart.00059.2014
Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J Biol Chem. 2015;290:5592–605.
pubmed: 25561726 pmcid: 4342473 doi: 10.1074/jbc.M114.616714
Reichelt ME, Mellor KM, Curl CL, Stapleton D, Delbridge LM. Myocardial glycophagy - a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol. 2013;65:67–75.
pubmed: 24080183 doi: 10.1016/j.yjmcc.2013.09.014
Cheng W, Wu P, Du Y, Wang Y, Zhou N, Ge Y, et al. Puerarin improves cardiac function through regulation of energy metabolism in streptozotocin-nicotinamide induced diabetic mice after myocardial infarction. Biochem Biophys Res Commun. 2015;463:1108–14.
pubmed: 26079885 doi: 10.1016/j.bbrc.2015.06.067
Lim SH, Lee J. Xyloglucan intake attenuates myocardial injury by inhibiting apoptosis and improving energy metabolism in a rat model of myocardial infarction. Nutr Res. 2017;45:19–29.
pubmed: 29037328 doi: 10.1016/j.nutres.2017.07.003
Qiu F, Zhang H, Yuan Y, Liu Z, Huang B, Miao H, et al. A decrease of ATP production steered by PEDF in cardiomyocytes with oxygen-glucose deprivation is associated with an AMPK-dependent degradation pathway. Int J Cardiol. 2018;257:262–71.
pubmed: 29361350 doi: 10.1016/j.ijcard.2018.01.034
Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57–64.
pubmed: 26889217 doi: 10.3892/etm.2015.2871
Dai Y, Wang Z, Quan M, Lv Y, Li Y, Xin HB, et al. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. Drug Des Devel Ther. 2018;12:3573–82.
pubmed: 30498333 pmcid: 6207266 doi: 10.2147/DDDT.S175116
Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M. Autophagy, its mechanisms and regulation: Implications in neurodegenerative diseases. Ageing Res Rev. 2017;40:64–74.
pubmed: 28923312 doi: 10.1016/j.arr.2017.09.005
Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells. 2010;15:923–33.
pubmed: 20670274 doi: 10.1111/j.1365-2443.2010.01433.x
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.
pubmed: 21189453 pmcid: 3060413 doi: 10.4161/auto.7.3.14487
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.
pubmed: 17332429 doi: 10.1161/01.RES.0000261924.76669.36
Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012;125:1134–46.
pubmed: 22294621 pmcid: 3337789 doi: 10.1161/CIRCULATIONAHA.111.078212
Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, et al. Beneficial effects of mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 2009;54:2435–46.
pubmed: 20082935 doi: 10.1016/j.jacc.2009.08.031
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.
pubmed: 21205641 doi: 10.1126/science.1196371
Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy. 2015;11:1341–57.
pubmed: 26103054 pmcid: 4590606 doi: 10.1080/15548627.2015.1061849
Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci. 2012;125:1488–99.
pubmed: 22275429
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–14.
pubmed: 26266977 pmcid: 5018156 doi: 10.1038/nature14893
Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9:1663–76.
pubmed: 23787782 pmcid: 4028332 doi: 10.4161/auto.24135
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 2012;287:19094–104.
pubmed: 22505714 pmcid: 3365942 doi: 10.1074/jbc.M111.322933
Nielsen J, Ortenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38:91–9.
pubmed: 23438218 doi: 10.1139/apnm-2012-0184
Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19:946–57.
pubmed: 24664781 doi: 10.1007/s10495-014-0977-0
Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physio. 2017;44:946–53.
doi: 10.1111/1440-1681.12791

Auteurs

Fan Qiu (F)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Yi Yuan (Y)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.

Wei Luo (W)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Yan-Shan Gong (YS)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.

Zhong-Ming Zhang (ZM)

Department of Cardiovascular and Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.

Zhong-Min Liu (ZM)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China. liu.zhongmin@tongji.edu.cn.
Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. liu.zhongmin@tongji.edu.cn.
Shanghai Institute of Stem Cell Research and Clinical translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China. liu.zhongmin@tongji.edu.cn.
Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China. liu.zhongmin@tongji.edu.cn.

Ling Gao (L)

Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China. gaoleng5@126.com.
Shanghai Institute of Stem Cell Research and Clinical translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China. gaoleng5@126.com.
Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China. gaoleng5@126.com.

Articles similaires

Humans Male Female Anemia Myocardial Infarction
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH