Comparison of major histocompatibility complex-B variability in Sri Lankan indigenous chickens with five global chicken populations using MHC-B SNP panel.

Sri Lankan indigenous chicken crossbreed disease resistance haplotype diversity major histocompatibility complex-B

Journal

Animal genetics
ISSN: 1365-2052
Titre abrégé: Anim Genet
Pays: England
ID NLM: 8605704

Informations de publication

Date de publication:
Dec 2021
Historique:
accepted: 26 08 2021
pubmed: 16 9 2021
medline: 18 12 2021
entrez: 15 9 2021
Statut: ppublish

Résumé

In the present study, we investigated the major histocompatibility complex (MHC)-B haplotypes diversity of Sri Lankan indigenous chickens from three different geographical sites consisting of highly mixed populations using 90 SNPs in the MHC-B region. A total of 48 haplotypes were identified. Those included 37 novel haplotypes and 11 previously identified 'standard' haplotypes. The MHC-linked marker, LEI0258, had 23 alleles showing less diversity than defined by MHC-B SNP haplotypes. Among those identified haplotypes, five standard haplotypes-BSNP-O02, BSNP-M01, BSNP-A04, BSNP-K03, BSNP-T04-were most commonly observed, suggesting past introgression of imported breeds. Comparison of the MHC-B haplotypes of Sri Lankan and four other global populations with previously defined haplotypes indicated the sharing of 23 standard haplotypes with common origins. Novel haplotypes are population-specific and not shared among the geographical boundaries. Backyard indigenous chickens are unselected, highly crossbred, and generally thrive under dynamic environmental conditions. Hence free-range production systems may be responsible for maintaining high diversity in the MHC-B region with novel haplotypes.

Identifiants

pubmed: 34523150
doi: 10.1111/age.13137
doi:

Substances chimiques

Avian Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

824-833

Subventions

Organisme : National Research Foundation, Republic of Korea
ID : MHC-2019R1F1A1061670

Informations de copyright

© 2021 Stichting International Foundation for Animal Genetics.

Références

Anderson D. (2013) The history of the Rhode Island Red. Backyard Poultry Magazine. American Poultry Association. http://www.backyardpoultrymag.com/4-2/the_history_of_the_rhode_island_red/.
AVIANDIV (2000) Development of strategy and application of molecular tools to assess biodiversity in chicken genetic resources. http://aviandiv.tzv.fal.de/index.html.
Chazara O., Chang C.-S., Bruneau N. et␣al. (2013) Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics 65, 447-59.
Chazara O., Fulton J.E., Helle J.M., Chang C.S. & Bed’Hom B. (2010) High-resolution chicken MHC genotyping using a SNP panel. 32nd conference of the international society for animal genetics, Edinburgh, Scotland, pp138.
Chazara O., Juul-Madsen H., Chang C.S., Tixier-Boichard M. & Bed’Hom B. (2011) Correlation in chicken between the marker LEI0258 alleles and major histocompatibility complex sequences. BMC Proceedings 5, S29.
Crawford R.D., ed. (1990) Applied breeding and selection. In: Poultry Breeding and Genetics, pp. 985-1028. Elsevier, Amsterdam-Oxford-New York-Tokyo.
Fulton J.E. (2020) Advances in methodologies for detecting MHC-B variability in chickens. Poultry Science 99, 1267-74.
Fulton J.E., Berres M.E., Kantanen J. & Honkatukia M. (2017) MHC-B variability within the Finnish Landrace chicken conservation program. Poultry Science 96, 3026-30.
Fulton J.E., Juul-Madsen H.R., Ashwell C.M., McCarron A.M., Arthur J.A., O’Sullivan N.P. & Taylor R.L. (2006) Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 58, 407-21.
Fulton J.E., Lund A.R., Mccarron A.M., Pinegar K.N., Korver D.R., Classen H.L., Aggrey S., Utterbach C., Anthony N.B. & Berres M.E. (2016b) MHC variability in heritage breeds of chickens. Poultry Science 95, 393-9. https://doi.org/10.3382/ps/pev363
Fulton J.E., McCarron A.M., Lund A.R., Pinegar K.N., Wolc A., Chazara O., Bed’Hom B., Berres M. & Miller M.M. (2016a) A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genetic Selection and Evolution 48, 1-15. https://doi.org/10.1186/s12711-015-0181-x
Gamage D.V.S.de S., & Gunaratne S.P. (2009) Smallholder poultry production. In: Livestock for Rural Development and Poverty Reduction: Sri Lankan Experience (Ed. by Gamage, D., Gamage, D.V.S. de S., Gunaratne, S.P., Chandrasiri, A.D.N., Subasinghe, D.H.A., Perera, B.M.A.O., Pushpakumara, P.G.A., Gajanayake, S., Serasinhe, T. & Pathirana, K.K.), pp. 59-95. HARTI, Hector Kobbekaduwa agrarian research and training institute, Colombo-7, Sri Lanka.
Gamage D.V.S.de S., Silva P. & Marambe B. (2010) Capacity building for conservation and utilization of farm animal genetic resources in Sri Lanka. In: Indigenous Animal Genetic Resources in Sri Lanka Status, Potential and Opportunities (Ed. by P. Silva), pp. 133-64. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/S2078633611000129
Gifford-Gonzalez D. & Hanotte O. (2011) Domesticating animals in Africa: implications of genetic and archaeological findings. Journal of World Prehistory 24, 1-23.
Gongora J., Rawlence N.J., Mobegi V.A. et␣al. (2008) (2008) Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proceeding of National Academy of Sciences of the United State of America 105, 10308-13.
Goto R.M., Afanassieff M., Ha J., Iglesias G.M., Ewald S.J., Briles W.E. & Miller M.M. (2002) Single-strand conformational polymorphism (SSCP) assays for major histocompatibility complex B genotyping in chickens. Poultry Science 81, 1832-41.
Granevitze Z., Hillel J., Chen G.H., Cuc N.T., Feldman M., Eding H. & Weigend S. (2007) Genetic diversity within chicken populations from different continents and management histories. Animal Genetics 38, 576-83.
Groeneveld L.F., Lenstra J.A., Eding H. et␣al. (2010) Genetic diversity in farm animals - a review. Animal Genetics 41, 6-31.
Gunaratne S.P., Chandrasiri A.D.N., Hemalatha M. & Roberts J.A. (1993) The productivity and nutrition of village chicken in Sri Lanka. In: Newcastle Disease in Village Chickens. Control with Thermostable Oral Vaccines (Ed. by P.B. Spradbrow) Proceedings No. 39, Australian Centre for International Agriculture Research, Canberra, ACT.
Hala K., Chausse A., Bourlet Y., Lassila O., Hasler V. & Auffray C. (1988) Attempt to detect recombination between B-F and B-L genes within the chicken B complex by serological typing, in␣vitro MLR, and RFLP analyses. Immunogenetics 28, 433-8. https://doi.org/10.1007/BF00355375
Hathaway H.E., Champagne G.B., Watts A.B. & Upp C.W. (1953) Meat yield of broilers of different breeds, strain and crosses. Poultry Science 32, 968-77.
Iglesias G.M., Canet Z.E., Cantaro H., Miquel M.C., Melo J.E., Miller M.M., Barres M.E. & Fulton J.E. (2019) MHC-B haplotypes in “Campero-Inta” chicken synthetic line. Poultry Science 98, 5281-6. https://doi.org/10.3382/ps/pez431
Jin S., Jayasena D.D., Jo C. & Lee J.H. (2017) The breeding history and Commercial development of the Korean native chicken. World Poultry Science Journal 73, 163-74. https://doi.org/10.1017/S004393391600088X
Jin Y.C., Wei P., Wei X.X., Zhao Z.Y. & Li Y. (2010) Marek's disease-resistant/susceptible MHC haplotypes in Xiayan chickens identified on the basis of BLB2 PCR-RFLP and BLB2/BF2 sequence analyses. British Poultry Science 51, 530-9.
Kang B.S., Cheong I.C., Lee S.J., Kim S.H., Ohh B.K. & Choi K.S. (1997) Estimation of heterosis for some economic traits in crossbreds between Korean native chicken and Rhode Island Red I. Hatching and growing performance in crossbreds between Korean native chicken and Rhode Island Red. Korean Journal of Poultry Science 24, 117-26.
Lamont S.J. (1998) Impact of genetics on disease resistance. Poultry Science 77, 1111-8.
Lamont S.J., Bolin C. & Cheville N. (1987) Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics 25, 284-9.
Lawal R.A., Atiyat R.M.A., Aljumaah R.S., Silva P., Mwacharo J.M. & Hanotte O. (2018) Whole-genome resequencing of red junglefowl and indigenous village chicken reveals new insight on the genome dynamics of the species. Frontier in Genetics 9, 264. https://doi.org/10.3389/fgene.2018.00264
Lawal R.A., Martin S.H., Vanmechelen K. et␣al. (2020) The wild species genome ancestry of domestic chickens. BMC Biology 18, 13.
Liu Y.P., Wu G.S., Yao Y.G., Miao Y.W., Luikart G., Baig M., Beja-Pereira A., Ding Z.L., Palanichamy M.G. & Zhang Y.P. (2006) Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution 38, 12-9.
Lundén A., Edfors-lilja I., Johansson K., Liljedahl L.-E. & Simonsen M. (1993) Associations between major histocompatibility complex genes and production traits in White Leghorns. Poultry Science 72, 989-99.
Lyimo C.M., Weigend A., Msoffe P.L., Eding H., Simianer H. & Weigend S. (2014) Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Animal Genetics 45, 836-48.
Manjula P., Bed’Hom B., Hoque M.R., Cho S., Seo D., Chazara O., Lee S.H. & Lee J.H. (2020b) Genetic diversity of MHC-B in 12 chicken populations in Korea revealed by single nucleotide polymorphisms. Immunogenetics 72, 367-79. https://doi.org/10.1007/s00251-020-01176-4
Manjula P., Fulton J.E., Seo D. & Lee J.H. (2020a) Major histocompatibility complex B (MHC-B) variability in Korean native chicken. Poultry Science 99, 4704-13. https://doi.org/10.1016/j.psj.2020.05.049
Miller M.M. & Taylor R.L. Jr (2016) A brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poultry Science 95, 375-92.
Molamane D.K., Simianer H., Weigend A., Reimer C., Schmitt A.O. & Weigend S. (2019) The SYNBREED chicken diversity panel: a global resource to assess chicken diversity at high genomic resolution. BMC Genomics 20, 345.
Molee A., Kongroi K., Kuadsantia P., Poompramun C. & Likitdecharote B. (2016) Association between single nucleotide polymorphisms of the major histocompatibility complex class ii gene and Newcastle disease virus titre and body weight in Leung Hang Khao chickens. Asian-Australasian Journal of Animal Science 29, 29-35.
Mwacharo J.M., Bjørnstad G., Mobegi V., Nomura K., Hanada H., Amano T., Jianlin H. & Hanotte O. (2011) Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution 58, 374-82.
Mwambene P.L., Kyallo M., Machuka E., Githae D. & Pelle R. (2019) Genetic diversity of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania based on Major Histocompatibility Complex-linked microsatellite LEI0258 marker typing. Poultry Science 98, 2734-46.
Owen J.P., Delany M.E. & Mullens B.A. (2008) MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 60, 621-31.
Penn D.J., Damjanovich K. & Potts W.K. (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proceedings of the National Academy of Sciences of the United State of America 99, 11260-4.
Potts A. (2012) Chicken. Misc-Alliance Distribution. Reaktion, London.
Radwan J., Babik W., Kaufman J., Lenz T.L. & Winternitz J. (2020) Advances in the evolutionary understanding of MHC polymorphism. Trends in Genetics 36, 298-311.
Schou T.W., Labouriau R., Permin A., Christensen J.P., Sorensen P., Cu H.P., Nguyen V.K. & Juul-Madsen H.R. (2010) MHC haplotype and susceptibility to experimental infections (Salmonella enteritidis, Pasteurella multocida or Ascaridia galli) in a commercial and an indigenous chicken breed. Veterinary Immunology Immunopathology 135, 52-63.
Silva L.P. & Rajapaksha W.R.K.J.S. (2005) Preliminary investigation of genetic characterization of native and endemic fowl types of Sri Lanka. In: Application of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries (Ed. by H.P.S. Makkar & G.J. Viljoen), pp 593-604. Springer Publishers, Dordrecht.
Silva P., Abeykone N.D.F., Samaraweera A.M., Han J.L., Ibrahim M.N.M. & Okeyo A.M. (2014) Genetic diversity and adaptability exist among backyard poultry populations in Sri Lanka. Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada.
Silva P., Guan X., Ho-Shing O., Jones J., Xu J., Hui D., Notter D. & Smith E. (2009) Mitochondrial DNA-based analysis of genetic variation and relatedness among Sri Lankan indigenous chickens and the Ceylon junglefowl (Gallus lafayetti). Animal Genetics 40, 1-9.
Silva P., Liyanage R.P., Senadheera S. & Dematawewa C.M.B. (2016) Monograph on indigenous chicken in Sri Lanka. UNEP-GEF-ILRI FAnGR Asia project, University of Peradeniya, Sri Lanka. ISBN: 978-955-589-216-2.
Storey A.A., Ramirez J.M., Quiroz D. et␣al. (2007) Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proceedings of the National Academy of Sciences of the United State of America 104, 10335-9. https://doi.org/10.1073/pnas.0703993104
Tarrant K.J., Rodrigo L., Meghan L. & Fulton J.E. (2020) Assessing MHC-B diversity in Silkie chickens. Poultry Science 99, 2337-41. https://doi.org/10.1016/j.psj.2020.01.005
Tixier-Boichard M., Bed'hom B. & Rognon X. (2011) Chicken domestication: from archaeology to genomics. Comptes Rendus Biologies 334, 197-204. https://doi.org/10.1016/j.crvi.2010.12.012
Walugembe M., Bertolini F., Dematawewa CMB, Reis M.P., Elbeltagy A.R., Schmidt C.J., Lamont S.J. & Rothschild M.F. (2019) Detection of selection signatures among Brazilian, Sri Lankan, and Egyptian chicken populations under different environmental conditions. Frontier Genetics 9, 737. https://doi.org/10.3389/fgene.2018.00737

Auteurs

P Manjula (P)

Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, 34134, Korea.

J E Fulton (JE)

Hy-Line International, Dallas Center, IA, 50063, USA.

D Seo (D)

Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, 34134, Korea.

J H Lee (JH)

Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, 34134, Korea.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH