Saliva SARS-CoV-2 Antibody Prevalence in Children.
Adolescent
Antibodies, Viral
/ blood
COVID-19
/ diagnosis
COVID-19 Serological Testing
/ methods
Child
Child, Preschool
Coronavirus Nucleocapsid Proteins
/ immunology
Enzyme-Linked Immunosorbent Assay
Female
Humans
Immunity, Humoral
/ immunology
Immunoglobulin A
/ blood
Immunoglobulin G
/ blood
Male
Phosphoproteins
/ immunology
Prevalence
SARS-CoV-2
/ immunology
Saliva
/ immunology
Sensitivity and Specificity
Seroepidemiologic Studies
Spike Glycoprotein, Coronavirus
/ immunology
SARS-CoV-2
antibodies
children
humoral immunity
prevalence
saliva
Journal
Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614
Informations de publication
Date de publication:
31 10 2021
31 10 2021
Historique:
pubmed:
16
9
2021
medline:
17
11
2021
entrez:
15
9
2021
Statut:
ppublish
Résumé
COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens.
Identifiants
pubmed: 34523985
doi: 10.1128/Spectrum.00731-21
pmc: PMC8557814
doi:
Substances chimiques
Antibodies, Viral
0
Coronavirus Nucleocapsid Proteins
0
Immunoglobulin A
0
Immunoglobulin G
0
Phosphoproteins
0
Spike Glycoprotein, Coronavirus
0
nucleocapsid phosphoprotein, SARS-CoV-2
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0073121Subventions
Organisme : Bill & Melinda Gates Foundation
ID : INV-024617
Pays : United States
Références
Clin Diagn Lab Immunol. 2001 Mar;8(2):346-8
pubmed: 11238219
Science. 2020 Dec 11;370(6522):1339-1343
pubmed: 33159009
N Engl J Med. 2020 Oct 29;383(18):1724-1734
pubmed: 32871063
Nat Commun. 2020 Jul 6;11(1):3436
pubmed: 32632160
Sci Immunol. 2020 Dec 7;5(54):
pubmed: 33288645
J Epidemiol Community Health. 2020 Nov 28;:
pubmed: 33249407
JAMA Netw Open. 2021 Feb 1;4(2):e210337
pubmed: 33576815
Sci Rep. 2020 Nov 30;10(1):20818
pubmed: 33257702
Lancet Microbe. 2021 Feb;2(2):e60-e69
pubmed: 33521709
Science. 2020 Aug 7;369(6504):643-650
pubmed: 32540902
Nat Commun. 2020 Sep 1;11(1):4378
pubmed: 32873791
J Allergy Clin Immunol. 2021 Feb;147(2):545-557.e9
pubmed: 33221383
Front Immunol. 2013 Jul 16;4:200
pubmed: 23882268
Sci Immunol. 2020 May 19;5(47):
pubmed: 32430309
Lancet. 2020 Aug 1;396(10247):313-319
pubmed: 32534626
N Engl J Med. 2020 Aug 6;383(6):e38
pubmed: 32502334
Clin Infect Dis. 2020 Jul 28;71(15):778-785
pubmed: 32198501
Nat Commun. 2020 Nov 12;11(1):5744
pubmed: 33184284
Immunology. 2021 Sep;164(1):135-147
pubmed: 33932228
Sci Rep. 2021 Mar 23;11(1):6614
pubmed: 33758278
J Infect Dis. 2021 Aug 2;224(3):407-414
pubmed: 33978762
J Virol Methods. 2021 Feb;288:114025
pubmed: 33227340
Pathog Immun. 2021 Jun 7;6(1):116-134
pubmed: 34136730
Front Immunol. 2020 Nov 30;11:611337
pubmed: 33329607
J Immunol. 2020 Dec 15;205(12):3491-3499
pubmed: 33127820
Science. 2021 Feb 26;371(6532):
pubmed: 33361116
J Clin Microbiol. 2021 Jan 21;59(2):
pubmed: 33127841
J Clin Microbiol. 2020 Dec 17;59(1):
pubmed: 33067270
J Clin Microbiol. 2008 May;46(5):1659-62
pubmed: 18305129
Sci Immunol. 2020 Dec 22;5(54):
pubmed: 33443036
Int J Infect Dis. 2020 Dec;101:314-322
pubmed: 33045429
Sci Immunol. 2020 Oct 8;5(52):
pubmed: 33033173
Clin Immunol. 2018 Dec;197:110-117
pubmed: 30244152
PLoS One. 2019 Jun 20;14(6):e0218456
pubmed: 31220138
Cell. 2021 Apr 1;184(7):1858-1864.e10
pubmed: 33631096
J Oral Microbiol. 2013;5:
pubmed: 23487566
Lancet. 2020 Aug 22;396(10250):535-544
pubmed: 32645347
J Clin Virol. 2020 Aug;129:104521
pubmed: 32623350
Emerg Infect Dis. 2021 Mar;27(3):928-931
pubmed: 33350923