Effect of constant collision mean free time on the boundary layer of the active collisional warm plasma.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 Sep 2021
Historique:
received: 02 10 2020
accepted: 30 08 2021
entrez: 16 9 2021
pubmed: 17 9 2021
medline: 17 9 2021
Statut: epublish

Résumé

The plasma boundary layer is analyzed for a plasma in contact with a conducting plain surface where the ion temperature is comparable with the electron temperature and the plasma pressure is sufficiently high. The variations of electrical potential from the plasma-presheath boundary to the wall is studied using the fluidal formalism of plasma in three approaches; plasma and sheath asymptotic solutions and full solution. In the full solution approach, fluidal equations lead to a singularity when the ion velocity reaches the ion thermal speed. It is shown that removing the singularity causes a well-defined eigenvalue problem and leads to smooth solutions for the model equations. Some of the applicable aspects such as the floating velocity and density of ions, the floating electrical potential and an estimation of the floating thickness of the boundary layer are obtained. The dependency of these quantities on the ionization degree, the ion temperature and ion-neutral collision is examined too.

Identifiants

pubmed: 34526547
doi: 10.1038/s41598-021-97750-1
pii: 10.1038/s41598-021-97750-1
pmc: PMC8443666
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18359

Informations de copyright

© 2021. The Author(s).

Références

Tonks, L. & Langmuir, I. A general theory of the plasma of an arc. Phys. Rev. 34(6), 876–922 (1929).
doi: 10.1103/PhysRev.34.876
Riemann, K.-U., Seebacher, J., Tskhakaya, D. D. Sr. & Kuhn, S. The plasma–sheath matching problem. Plasma Phys. Control. Fusion 47(11), 1949–1970 (2005).
doi: 10.1088/0741-3335/47/11/006
Riemann, K.-U. The influence of collisions on the plasma sheath transition. Phys. Plasmas 4(11), 4158–4166 (1997).
doi: 10.1063/1.872536
Qin, S. & Chan, C. Plasma immersion ion implantation doping experiments for microelectronics. J. Vac. Sci. Technol. B 12, 962–968 (1994).
doi: 10.1116/1.587336
Lieberman, M. A. & Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing 2nd edn, 571–646 (Wiley, 2005).
doi: 10.1002/0471724254
Hutchinson, I. H. Principles of Plasma Diagnostics 2nd edn, 6–9 (Cambridge University Press, 2005).
Roth, J. R. Industrial Plasma Engineering 1st edn, 37–110 (IOP Publishing Ltd, 2001).
doi: 10.1201/9781420034127
Anders, A. Plasma and ion sources in large area coating: A review. Surf. Coat. Technol. 200, 1893–1906 (2005).
doi: 10.1016/j.surfcoat.2005.08.018
Stangeby, P. C. The Plasma Boundary of Magnetic Fusion Devices 1st edn, 6–52 (IOP Publishing Ltd, 2000).
doi: 10.1201/9780367801489
Franklin, R. N. Plasma Phenomena in Gas Discharges 1st edn, 28–38 (Oxford University Press, 1976).
Valentini, H.-B. Removal of singularities in the hydrodynamic description of plasmas including space-charge effects, several species of ions and non-vanishing ion temperature. J. Phys. D Appl. Phys. 21, 311–321 (1988).
doi: 10.1088/0022-3727/21/2/011
Palop, J. I. F., Ballesteros, J., Colomer, V. & Hernandez, M. A. Theoretical ion current to cylindrical Langmuir probes for finite ion temperature values. J. Phys. D Appl. Phys. 29, 2832–2840 (1996).
doi: 10.1088/0022-3727/29/11/017
Das, G. C., Singha, B. & Chutia, J. Characteristic behavior of the sheath formation in thermal plasma. Phys. Plasmas 6, 3685–3689 (1999).
doi: 10.1063/1.873627
Minghao, L., Yu, Z., Wanyu, D., Jinyuan, L. & Xiaogang, W. Effects of ion temperature on collisionless and collisional rf sheath. Plasma Sci. Technol. 8(5), 544–548 (2006).
doi: 10.1088/1009-0630/8/5/10
Masoudi, S. F. A magnetized plasma sheath where the ion collision frequency depends on ion flow velocity. J. Phys. D Appl. Phys. 40(21), 6641–6645 (2007).
doi: 10.1088/0022-3727/40/21/024
Khoramabadi, M., Ghomi, H. & Ghorannevis, M. Ion temperature effect on weakly collisional dc plasma sheath. J. Fusion Energy 29, 365–370 (2010).
doi: 10.1007/s10894-010-9289-8
Ghomi, H. & Khoramabadi, M. Influence of ion temperature on plasma sheath transition. J. Plasma Phys. 76, 247–255 (2010).
doi: 10.1017/S0022377809990304
Khoramabadi, M., Ghomi, H. & Shukla, P. K. Numerical investigation of the ion temperature effects on magnetized dc plasma sheath. J. Appl. Phys. 109, 073307-1-073307–8 (2011).
doi: 10.1063/1.3569844
Liu, J., Wang, F. & Sun, J. Properties of plasma sheath with ion temperature in magnetic fusion devices. Phys. Plasmas 18, 013506 (2011).
doi: 10.1063/1.3543757
Tsushima, A. & Saitou, Y. Sheath-plasma criterion of fluid theory with finite ion temperature. J. Phys. Soc. Jpn. 80, 045001 (2011).
doi: 10.1143/JPSJ.80.045001
El Kaouini, M. & Chatei, H. Combined effect of ion temperature and magnetic field on collisionless sheath structure. J. Fusion Energy 31, 317–324 (2012).
doi: 10.1007/s10894-011-9486-0
Ou, J. & Yang, J. Properties of a warm plasma collisional sheath in an oblique magnetic field. Phys. Plasmas 19, 113504 (2012).
doi: 10.1063/1.4766476
Khoramabadi, M. & Masoudi, S. F. The effects of the polytropic coefficient on plasma sheath in two cases isothermal and adiabatic ion thermal flow. Astrophys. Space Sci. 341(2), 501–505 (2012).
doi: 10.1007/s10509-012-1075-9
Khoramabadi, M., Ghomi, H. & Shukla, P. K. The bohm-sheath criterion in plasmas containing electrons and multiply charged ions. J. Plasma Phys. 79, 267–271 (2013).
doi: 10.1017/S0022377812000955
Khoram, M., Ghomi, H. & Navab Safa, N. Ion temperature and gas pressure effects on the magnetized sheath dynamics during plasma immersion ion implantation. Phys. Plasmas 23, 033511 (2016).
doi: 10.1063/1.4944503
Masoudi, S. F. & Salehkoutahi, S. M. The dynamics of ions entering the magnetized plasma sheath obliquely—Collisional and collisionless situations. Eur. Phys. J. D 57(1), 71–76 (2010).
doi: 10.1140/epjd/e2009-00320-5
Gyergyek, T. & Kovacic, J. Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects. Phys. Plasmas 22, 043502 (2015).
doi: 10.1063/1.4916318
Crespo, R. M. Positive ion temperature effect on the plasma-wall transition. Phys. Plasmas 25, 063509 (2018).
doi: 10.1063/1.5025828
Khoram, M. The plasma and sheath asymptotic solutions along with the full solution of the plasma equations including the ion isothermal flow. IEEE Trans. Plasma Sci. 47, 1704–1712 (2019).
doi: 10.1109/TPS.2019.2901723
Franklin, R. N. & Snell, J. The low-pressure positive column in electronegative gases including space charge-matching plasma and sheath. J. Phys. D Appl. Phys. 31, 2532–2542 (1998).
doi: 10.1088/0022-3727/31/19/026
Palop, J. I. F., Ballesteros, J., Hernandez, M. A., Crespo, R. M. & del Pino, S. B. Influence of the positive ion thermal motion on the stratified presheath in electronegative plasmas. J. Phys. D Appl. Phys. 37, 863–867 (2004).
doi: 10.1088/0022-3727/37/6/010
Palop, J. I. F., Ballesteros, J., Hernandez, M. A., Crespo, R. M. & del Pino, S. B. Influence of the positive ion thermal motion on the stratified presheath for spherical and cylindrical Langmuir probes immersed in electronegative plasmas. J. Phys. D Appl. Phys. 38, 868–871 (2005).
doi: 10.1088/0022-3727/38/6/014
Palop, J. I. F., Ballesteros, J., Crespo, R. M. & Hernandez, M. A. Sheath analysis in collisional electronegative plasmas with finite temperature of positive ions. J. Phys. D Appl. Phys. 41, 235201 (2008).
doi: 10.1088/0022-3727/41/23/235201
Ghomi, H., Khoramabadi, M., Shukla, P. K. & Ghorannevis, M. Plasma sheath criterion in thermal electronegative plasmas. J. Appl. Phys. 108, 063302 (2010).
doi: 10.1063/1.3475508
Yasserian, K. & Aslaninejad, M. Effect of the positive ion collisions on the positive space-charge in electronegative plasmas. Eur. Phys. J. D 67, 161-1-161–9 (2013).
doi: 10.1140/epjd/e2013-30720-7
Li, J.-J., Ma, J. X. & Wei, Z. Sheath and boundary conditions in a collisional magnetized warm electronegative plasma. Phys. Plasmas 20, 063503 (2013).
doi: 10.1063/1.4811479
Yasserian, K. & Aslaninejad, M. Influence of the temperature of positive ions on the sheath formation and parameter space region in magnetized electronegative plasmas. Phys. Lett. A 378, 2757–2762 (2014).
doi: 10.1016/j.physleta.2014.05.059
Aslaninejad, M. & Yasserian, K. Singularity and bohm criterion in hot positive ion species in the electronegative ion sources. Phys. Plasmas 23, 053505 (2016).
doi: 10.1063/1.4948717
Valentini, H. B. & Kaiser, D. The singularity of the two-fluid plasma equations, its relations to boundary conditions, and the numerical solution of these equations. Phys. Plasmas 24, 123508 (2017).
doi: 10.1063/1.5005882

Auteurs

Mansour Khoram (M)

Department of Basic Sciences and Engineering, Borujerd Branch, Islamic Azad University, P. O. Box 6915136111, Borujerd, Iran. m.khoramabadi@srbiau.ac.ir.

S Farhad Masoudi (SF)

Department of Physics, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.

Classifications MeSH