Superconducting edge states in a topological insulator.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 Sep 2021
15 Sep 2021
Historique:
received:
11
06
2021
accepted:
19
08
2021
entrez:
16
9
2021
pubmed:
17
9
2021
medline:
17
9
2021
Statut:
epublish
Résumé
We study the stability of multiple conducting edge states in a topological insulator against perturbations allowed by the time-reversal symmetry. A system is modeled as a multi-channel Luttinger liquid, with the number of channels equal to the number of Kramers doublets at the edge. Assuming strong interactions and weak disorder, we first formulate a low-energy effective theory for a clean translation invariant system and then include the disorder terms allowed by the time-reversal symmetry. In a clean system with N Kramers doublets, N - 1 edge states are gapped by Josephson couplings and the single remaining gapless mode describes collective motion of Cooper pairs synchronous across the channels. Disorder perturbation in this regime, allowed by the time reversal symmetry is a simultaneous backscattering of particles in all N channels. Its relevance depends strongly on the parity if the number of channel N is not very large. Our main result is that disorder becomes irrelevant with the increase of the number of edge modes leading to the stability of the edge states superconducting regime even for repulsive interactions.
Identifiants
pubmed: 34526556
doi: 10.1038/s41598-021-97558-z
pii: 10.1038/s41598-021-97558-z
pmc: PMC8443678
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18400Subventions
Organisme : Leverhulme Trust
ID : RPG-2019-317
Organisme : Planning and Budgeting Committee of the Council for Higher Education of Israel
ID : 3-16430
Informations de copyright
© 2021. The Author(s).
Références
Phys Rev Lett. 2009 Nov 6;103(19):196803
pubmed: 20365942
Phys Rev Lett. 2000 Sep 4;85(10):2160-3
pubmed: 10970487
Phys Rev Lett. 2001 Jan 22;86(4):676-9
pubmed: 11177910
Science. 2007 Nov 2;318(5851):766-70
pubmed: 17885096
Phys Rev Lett. 2013 Mar 29;110(13):136405
pubmed: 23581351
Sci Rep. 2017 Jun 14;7(1):3550
pubmed: 28615688
Phys Rev Lett. 2005 Sep 30;95(14):146802
pubmed: 16241681
Phys Rev Lett. 2012 May 18;108(20):206804
pubmed: 23003166
Phys Rev Lett. 2002 Jan 21;88(3):036401
pubmed: 11801075
Science. 2006 Dec 15;314(5806):1757-61
pubmed: 17170299
Phys Rev Lett. 1995 Mar 13;74(11):2090-2093
pubmed: 10057839