Phylodynamics reveals the role of human travel and contact tracing in controlling the first wave of COVID-19 in four island nations.
Australia
COVID-19
Iceland
New Zealand
Taiwan
contact tracing
coronavirus
human movement
phylogenomics
Journal
Virus evolution
ISSN: 2057-1577
Titre abrégé: Virus Evol
Pays: England
ID NLM: 101664675
Informations de publication
Date de publication:
2021
2021
Historique:
received:
12
04
2021
revised:
14
05
2021
accepted:
07
06
2021
entrez:
16
9
2021
pubmed:
17
9
2021
medline:
17
9
2021
Statut:
epublish
Résumé
New Zealand, Australia, Iceland, and Taiwan all saw success in controlling their first waves of Coronavirus Disease 2019 (COVID-19). As islands, they make excellent case studies for exploring the effects of international travel and human movement on the spread of COVID-19. We employed a range of robust phylodynamic methods and genome subsampling strategies to infer the epidemiological history of Severe acute respiratory syndrome coronavirus 2 in these four countries. We compared these results to transmission clusters identified by the New Zealand Ministry of Health by contact tracing strategies. We estimated the effective reproduction number of COVID-19 as 1-1.4 during early stages of the pandemic and show that it declined below 1 as human movement was restricted. We also showed that this disease was introduced many times into each country and that introductions slowed down markedly following the reduction of international travel in mid-March 2020. Finally, we confirmed that New Zealand transmission clusters identified via standard health surveillance strategies largely agree with those defined by genomic data. We have demonstrated how the use of genomic data and computational biology methods can assist health officials in characterising the epidemiology of viral epidemics and for contact tracing.
Identifiants
pubmed: 34527282
doi: 10.1093/ve/veab052
pii: veab052
pmc: PMC8344840
doi:
Types de publication
Journal Article
Langues
eng
Pagination
veab052Informations de copyright
© The Author(s) 2021. Published by Oxford University Press.
Références
PLoS Comput Biol. 2013;9(3):e1002947
pubmed: 23555203
PLoS Genet. 2015 Aug 12;11(8):e1005421
pubmed: 26267488
Science. 2020 May 8;368(6491):
pubmed: 32234805
Nat Rev Microbiol. 2008 Jun;6(6):477-87
pubmed: 18533288
BMJ. 2020 Mar 23;368:m1165
pubmed: 32205334
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):228-33
pubmed: 23248286
J Travel Med. 2020 Mar 13;27(2):
pubmed: 32052846
Mol Biol Evol. 2016 Aug;33(8):2102-16
pubmed: 27189573
Lancet Infect Dis. 2020 Oct;20(10):1105-1106
pubmed: 32559453
JAMA. 2020 Apr 14;323(14):1341-1342
pubmed: 32125371
N Engl J Med. 2020 Jun 11;382(24):2302-2315
pubmed: 32289214
Emerg Infect Dis. 2021 May;27(5):1317-1322
pubmed: 33900175
Nat Commun. 2020 Sep 1;11(1):4376
pubmed: 32873808
J Med Virol. 2020 Jun;92(6):602-611
pubmed: 32104911
J Prev Med Public Health. 2020 May;53(3):151-157
pubmed: 32498136
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650
pubmed: 30958812
Commun Dis Intell (2018). 2020 Jul 2;44:
pubmed: 32615916
Lancet Glob Health. 2020 Apr;8(4):e488-e496
pubmed: 32119825
Science. 2020 May 1;368(6490):489-493
pubmed: 32179701
Science. 2004 Jan 16;303(5656):327-32
pubmed: 14726583
Elife. 2020 Aug 13;9:
pubmed: 32788039
Bioinformatics. 2018 Dec 1;34(23):4121-4123
pubmed: 29790939
Euro Surveill. 2017 Mar 30;22(13):
pubmed: 28382917
Bioinformatics. 2018 Nov 15;34(22):3843-3848
pubmed: 29790921
Lancet Reg Health West Pac. 2020 Nov;4:100044
pubmed: 34013216
BMJ. 2020 Apr 2;369:m1375
pubmed: 32241884
J Autoimmun. 2020 May;109:102433
pubmed: 32113704
J Med Virol. 2020 Jun;92(6):675-679
pubmed: 32096566
Viruses. 2022 Jul 27;14(8):
pubmed: 36016270
N Z Med J. 2020 Apr 3;133(1512):10-14
pubmed: 32242173
Swiss Med Wkly. 2020 Jul 10;150:w20313
pubmed: 32677705
Lancet. 2020 May 9;395(10235):1474
pubmed: 32386582
PLoS Comput Biol. 2009 Sep;5(9):e1000520
pubmed: 19779555
Science. 2020 Apr 24;368(6489):395-400
pubmed: 32144116