Real-world experience with anti-PD-1/PD-L1 monotherapy in patients with non-small cell lung cancer : A retrospective Austrian multicenter study.


Journal

Wiener klinische Wochenschrift
ISSN: 1613-7671
Titre abrégé: Wien Klin Wochenschr
Pays: Austria
ID NLM: 21620870R

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 26 10 2020
accepted: 14 08 2021
pubmed: 17 9 2021
medline: 20 11 2021
entrez: 16 9 2021
Statut: ppublish

Résumé

As real-world data regarding immunotherapy for non-small cell lung cancer are lacking for Austria, we conducted a retrospective study in six hospitals to present data from real-world practice. Patients with metastatic non-small cell lung cancer were stratified into two groups, either patients with first-line pembrolizumab monotherapy (cohort 1) or patients with second-line nivolumab, pembrolizumab or atezolizumab monotherapy (cohort 2). Primary outcome measures were objective response rate and overall survival. A matched-pair analysis was performed to compare overall survival to patients from the Tyrolean Lung Cancer Project as a historical control group. In total, 89 patients were identified, 42 patients in cohort 1 and 47 patients in cohort 2. The objective response rates were 43.3% and 31.4%, respectively. The median overall survival was 17.0 months (95% CI 11.7-21.5 months) in cohort 1 and 18.7 months (95% CI 9.5-23.4 months) in cohort 2. Treatment-related adverse events grades 3 and 4 were reported in 11.2% of patients. The matched-pair analysis showed a median overall survival of 15.2 months (95% CI 7.6-20.4 months) for first-line pembrolizumab monotherapy compared to 9.8 months (95% CI 7.8-11.6 months) for the historical control (p = 0.43). In cohort 2, a median overall survival of 20.3 months (95% CI 6.9-26.2 months) for second-line immunotherapy compared to 5.4 months (95% CI 3.2-11.7 months) for the historical control (p = 0.18) was shown. The results are comparable with other real-world studies and, when matched to historical controls, support the improvement in outcomes made possible by these agents.

Identifiants

pubmed: 34528126
doi: 10.1007/s00508-021-01940-w
pii: 10.1007/s00508-021-01940-w
doi:

Substances chimiques

B7-H1 Antigen 0

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1122-1130

Informations de copyright

© 2021. Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.
doi: 10.1056/NEJMoa1507643
Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.
doi: 10.1056/NEJMoa1504627
Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.
doi: 10.1016/S0140-6736(15)01281-7
Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.
doi: 10.1056/NEJMoa1606774
Reck M, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50 % or greater. J Clin Oncol. 2019;37(7):537–46.
doi: 10.1200/JCO.18.00149
Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.
doi: 10.1016/S0140-6736(16)32517-X
Berger ML, et al. Good practices for real-world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR-ISPE special task force on real-world evidence in health care decision making. Value Health. 2017;20(8):1003–8.
doi: 10.1016/j.jval.2017.08.3019
Chan K, et al. Developing a framework to incorporate real-world evidence in cancer drug funding decisions: the Canadian real-world evidence for value of cancer drugs (CanREvalue) collaboration. BMJ Open. 2020;10(1):e32884.
doi: 10.1136/bmjopen-2019-032884
de Lusignan S, Crawford L, Munro N. Creating and using real-world evidence to answer questions about clinical effectiveness. J Innov Health Inform. 2015;22(3):368–73.
doi: 10.14236/jhi.v22i3.177
Katkade VB, Sanders KN, Zou KH. Real world data: an opportunity to supplement existing evidence for the use of long-established medicines in health care decision making. J Multidiscip Healthc. 2018;11:295–304.
doi: 10.2147/JMDH.S160029
Lipworth W. Real-world data to generate evidence about healthcare interventions – the application of an ethics framework for big data in health and research. ABR. 2019;11:289. https://doi.org/10.1007/s41649-019-00095-1 .
doi: 10.1007/s41649-019-00095-1 pubmed: 33717317 pmcid: 7747250
Oyinlola JO, Campbell J, Kousoulis AA. Is real world evidence influencing practice? A systematic review of CPRD research in NICE guidances. BMC Health Serv Res. 2016;16:299.
doi: 10.1186/s12913-016-1562-8
Goldstraw P, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51.
doi: 10.1016/j.jtho.2015.09.009
CTEP. Common terminology criteria for adverse events (CTCAE). 2020. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm . Accessed 27 Jan 2020.
Seymour L, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–e52.
doi: 10.1016/S1470-2045(17)30074-8
Kocher F, et al. Longitudinal analysis of 2293 NSCLC patients: a comprehensive study from the TYROL registry. Cancer Treat Res. 2015;87(2):193–200.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
Wickham H. tidyverse: easily install and load the ‘Tidyverse’. R package version 1.2.1. 2017. https://CRAN.R-project.org/package=tidyverse .
Kassambara A, Kosinski M, Biecek P. survminer: drawing survival curves using ‘ggplot2’. R package version 0.4.6. 2019. https://CRAN.R-project.org/package=survminer . Accessed: 27 Jan 2020.
Dardis C. survMisc: miscellaneous functions for survival data. R package version 0.5.5. 2018. https://CRAN.R-project.org/package=survMisc . Accessed: 27 Jan 2020.
Planchard D, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):863–70.
doi: 10.1093/annonc/mdy474
Postmus PE, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(4):iv1–iv21.
doi: 10.1093/annonc/mdx222
WCLC. Abstract OA14.01 – KEYNOTE-024 three-year survival update: pembrolizumab effective as first-line therapy for advanced non-small-cell lung cancer. 2019. https://www.iaslc.org/About-IASLC/News-Detail/keynote-024-three-year-survival-update-pembrolizumab-effective-as-first-line-therapy-for-advanced-nonsmall-cell-lung-cancer . Accessed 6 Feb 2020.
Mok TSK, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30.
doi: 10.1016/S0140-6736(18)32409-7
Faehling M, et al. Immuno-oncological treatment and tumor mass in non-small cell lung cancer: case-control analysis of overall survival in routine clinical practice. Oncology. 2019;97(4):228–35.
doi: 10.1159/000500885
Ahn BC, et al. Comprehensive analysis of the characteristics and treatment outcomes of patients with non-small cell lung cancer treated with anti-PD‑1 therapy in real-world practice. J Cancer Res Clin Oncol. 2019;145(6):1613–23.
doi: 10.1007/s00432-019-02899-y
Areses Manrique MC, et al. Real world data of nivolumab for previously treated non-small cell lung cancer patients: a Galician lung cancer group clinical experience. Transl Lung Cancer Res. 2018;7(3):404–15.
doi: 10.21037/tlcr.2018.04.03
Dudnik E, et al. Effectiveness and safety of nivolumab in advanced non-small cell lung cancer: the real-life data. Cancer Treat Res. 2018;126:217–23.
Juergens RA, et al. Real-world benefit of nivolumab in a Canadian non-small-cell lung cancer cohort. Curr Oncol. 2018;25(6):384–92.
doi: 10.3747/co.25.4287
Khozin S, et al. Real-world outcomes of patients with metastatic non-small cell lung cancer treated with programmed cell death protein 1 inhibitors in the year following U.S. regulatory approval. Oncologist. 2019;24(5):648–56.
doi: 10.1634/theoncologist.2018-0307
Kobayashi K, et al. Real-world efficacy and safety of nivolumab for advanced non-small-cell lung cancer: a retrospective multicenter analysis. Clin Lung Cancer. 2018;19(3):e349–e58.
doi: 10.1016/j.cllc.2018.01.001
Martin C, et al. Efficacy and safety of nivolumab in previously treated patients with non-small-cell lung cancer: real world experience in Argentina. Clin Lung Cancer. 2020;21(5):e380–e7. https://doi.org/10.1016/j.cllc.2020.02.014 .
doi: 10.1016/j.cllc.2020.02.014 pubmed: 32213298
Mazieres J, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;24:24.
Merino Almazan M, et al. A multicentre observational study of the effectiveness, safety and economic impact of nivolumab on non-small-cell lung cancer in real clinical practice. Int J Clin Pharm. 2019;41(1):272–9.
doi: 10.1007/s11096-018-0772-z
Tambo Y, et al. Real-world efficacy of first-line pembrolizumab in patients with advanced or recurrent non-small-cell lung cancer and high PD-L1 tumor expression. Clin Lung Cancer. 2020;21(5):e366–e79. https://doi.org/10.1016/j.cllc.2020.02.017 .
doi: 10.1016/j.cllc.2020.02.017 pubmed: 32199806
Weis TM, et al. Real-world comparison of immune checkpoint inhibitors in non-small cell lung cancer following platinum-based chemotherapy. J Oncol Pharm Pract. 2020;26(3):564–71.
doi: 10.1177/1078155219855127
Murteira R, et al. Real-world effectiveness of pembrolizumab in previously treated non-small cell lung cancer: a population-based cohort study. Pharmacoepidemiol Drug Saf. 2020;29(10):1295–302. https://doi.org/10.1002/pds.5091 .
doi: 10.1002/pds.5091 pubmed: 32844487
Bjornhart B, et al. Efficacy and safety of immune checkpoint inhibitors in a Danish real life non-small cell lung cancer population: a retrospective cohort study. Acta Oncol. 2019;58(7):953–61.
doi: 10.1080/0284186X.2019.1615636
Ksienski D, et al. Pembrolizumab for advanced nonsmall cell lung cancer: efficacy and safety in everyday clinical practice. Cancer Treat Res. 2019;133:110–6.
Tamiya M, et al. Efficacy and safety of pembrolizumab as first-line therapy in advanced non-small cell lung cancer with at least 50 % PD-L1 positivity: a multicenter retrospective cohort study (HOPE-001). Invest New Drugs. 2019;37(6):1266–73.
doi: 10.1007/s10637-019-00843-y
Wang Y, et al. Treatment-related adverse events of PD‑1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008–19.
doi: 10.1001/jamaoncol.2019.0393

Auteurs

Sabine Geiger-Gritsch (S)

HTA Austria-Austrian Institute for Health Technology Assessment GmbH, Garnisongasse 7/20, 1090, Vienna, Austria. sabine.geiger-gritsch@aihta.at.

Horst Olschewski (H)

Department of Internal Medicine, Division of Pulmonology, Medical University Graz, Auenbruggerplatz 15, 8036, Graz, Austria.

Florian Kocher (F)

Department of Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.

Robert Wurm (R)

Department of Internal Medicine, Division of Pulmonology, Medical University Graz, Auenbruggerplatz 15, 8036, Graz, Austria.

Gudrun Absenger (G)

Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.

Martin Flicker (M)

Department of Lung Diseases, Landeskrankenhaus Hochsteiermark, Vordernberger Straße 42, 8700, Leoben, Austria.

André Hermann (A)

Department of Internal Medicine, Division of Gastroenterology, Infectiology & Pneumology, Landeskrankenhaus Graz II West, Göstinger Straße 22, 8020, Graz, Austria.

Peter Heininger (P)

Medical Directorate, District Hospital Schwaz, Swarovskistraße 1-3, 6130, Schwaz, Austria.

Michael Fiegl (M)

Internal Medicine, Privatklinik Hochrum, Lärchenstraße 41, 6063, Rum, Austria.

Melanie Zechmeister (M)

Verein DEXHELPP, Neustiftgasse 57-59, 1070, Vienna, Austria.

Florian Endel (F)

Verein DEXHELPP, Neustiftgasse 57-59, 1070, Vienna, Austria.

Claudia Wild (C)

HTA Austria-Austrian Institute for Health Technology Assessment GmbH, Garnisongasse 7/20, 1090, Vienna, Austria.

Georg Pall (G)

Department of Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH