A basic model for cell cholesterol homeostasis.
cholesterol
complex
computation
homeostasis
model
phospholipid
plasma membrane
simulation
Journal
Traffic (Copenhagen, Denmark)
ISSN: 1600-0854
Titre abrégé: Traffic
Pays: England
ID NLM: 100939340
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
26
08
2021
received:
06
05
2021
accepted:
13
09
2021
pubmed:
17
9
2021
medline:
4
5
2022
entrez:
16
9
2021
Statut:
ppublish
Résumé
Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.
Substances chimiques
Phospholipids
0
Sterols
0
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
471-481Informations de copyright
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22(4):422-429.
van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368(1-2):1-16.
Howe V, Sharpe LJ, Alexopoulos SJ, et al. Cholesterol homeostasis: how do cells sense sterol excess? Chem Phys Lipids. 2016;199:170-178.
Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225-245.
Paalvast Y, Kuivenhoven JA, Groen AK. Evaluating computational models of cholesterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851(10):1360-1376.
Pool F, Currie R, Sweby PK, Salazar JD, Tindall MJ. A mathematical model of the mevalonate cholesterol biosynthesis pathway. J Theor Biol. 2018;443:157-176.
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic. 2020;21(11):662-674.
Lange Y, Steck TL. Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res. 2008;47(5):319-332.
Steck TL, Lange Y. Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol. 2010;20(11):680-687.
Wustner D. Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane. Theor Biol Med Model. 2019;16(1):13.
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids. 2016;199:74-93.
Lange Y, Tabei SMA, Ye J, Steck TL. Stability and stoichiometry of bilayer phospholipid-cholesterol complexes: relationship to cellular sterol distribution and homeostasis. Biochemistry. 2013;52(40):6950-6959.
Luo J, Jiang L, Yang H, Song B-L. Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic. 2017;18(4):209-217.
Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem. 2009;390(4):287-293.
Kiss RS, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res. 2017;31(2):95-107.
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med. 2017;95(11):1153-1165.
Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454(7203):470-477.
Rogers MA, Liu J, Song B-L, Li B-L, Chang CCY, Chang T-Y. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol. 2015;151(0):102-107.
Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma-membranes contain half the phospholipid and 90-percent of the cholesterol and Sphingomyelin in cultured human-fibroblasts. J Biol Chem. 1989;264(7):3786-3793.
Warnock DE, Roberts C, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU. Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography. J Biol Chem. 1993;268(14):10145-10153.
Lorent JH, Levental KR, Ganesan L, et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol. 2020;16(6):644-652.
Ray TK, Skipski VP, Barclay M, Essner E, Archibald FM. Lipid composition of rat liver plasma membranes. J Biol Chem. 1969;244(20):5528-5536.
Andreyev AY, Fahy E, Guan Z, et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res. 2010;51(9):2785-2797.
Boslem E, Weir JM, Macintosh G, et al. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem. 2013;288(37):26569-26582.
Lange Y, Ye J, Steck TL. Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One. 2014;9(7):e98482.
Mesmin B, Maxfield FR. Intracellular sterol dynamics. Biochim Biophys Acta Mol Cell Biol Lipids. 2009;1791(7):636-645.
Yu C, Zhang Y, Lu X, Chen J, Chang CC, Chang TY. Role of the N-terminal hydrophilic domain of acyl-coenzyme A:cholesterol acyltransferase 1 on the enzyme's quaternary structure and catalytic efficiency. Biochemistry. 2002;41(11):3762-3769.
Renkonen O, Gahmberg CG, Simons K, Kaariainen L. The lipids of the plasma membranes and endoplasmic reticulum from cultured baby hamster kidney cells (BHK21). Biochim Biophys Acta. 1972;255(1):66-78.
Slotte JP, Hedstrom G, Rannstrom S, Ekman S. Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior. Biochim Biophys Acta. 1989;985(1):90-96.
Lange Y, Strebel F, Steck TL. Role of the plasma-membrane in cholesterol esterification in rat hepatoma-cells. J Biol Chem. 1993;268(19):13838-13843.
Lange Y, Ye J, Rigney R, Steck T. Cholesterol movement in Niemann-pick type C cells and in cells treated with amphiphiles. J Biol Chem. 2000;275(23):17468-17475.
Lange Y, Ye J, Steck TL. Activation mobilizes the cholesterol in the late endosomes-lysosomes of niemann pick type C cells. PLoS One. 2012;7(1):e30051.
Colbeau A, Nachbaur J, Vignais PM. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971;249(2):462-492.
Zambrano F, Fleischer S, Fleischer B. Lipid-composition of Golgi apparatus of rat-kidney and liver in comparison with other subcellular organelles. Biochim Biophys Acta. 1975;380(3):357-369.
Boyer JL, Allen RM, Ng OC. Biochemical separation of Na+,K+-ATPase from a "purified" light density, "canalicular"-enriched plasma membrane fraction from rat liver. Hepatology. 1983;3(1):18-28.
Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008;8(6):512-521.
Sokolov A, Radhakrishnan A. Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J Biol Chem. 2010;285(38):29480-29490.
Li Y, Ge M, Ciani L, et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem. 2004;279(35):37030-37039.
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590-614.
Feo F, Canuto RA, Garcea R, Gabriel L. Effect of cholesterol content on some physical and functional properties of mitochondria isolated from adult rat liver, fetal liver, cholesterol-enriched liver and hepatomas AH-130, 3924A and 5123. Biochim Biophys Acta. 1975;413(1):116-134.
Pietrangelo A, Grandi R, Tripodi A, et al. Lipid composition and fluidity of liver mitochondria, microsomes and plasma membrane of rats with chronic dietary iron overload. Biochem Pharmacol. 1990;39(1):123-128.
Fouillen L, Maneta-Peyret L, Moreau P. ER membrane lipid composition and metabolism: lipidomic analysis. Methods Mol Biol. 2018;1691:125-137.
Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40(12):2264-2270.
Lange Y, Ory DS, Ye J, Lanier MH, Hsu F-F, Steck TL. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem. 2008;283(3):1445-1455.
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem. 2018;87:783-807.
Shibata Y, Voeltz GK, Rapoport TA. Rough sheets and smooth tubules. Cell. 2006;126(3):435-439.
Lange Y, Cutler HB, Steck TL. The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. J Biol Chem. 1980;255(19):9331-9337.
Chakrabarti RS, Ingham SA, Kozlitina J, et al. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. Elife. 2017;6:e23355.
Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 2014;3:e02882.
Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP. Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry. 2012;51:3373-3382.
Engberg O, Hautala V, Yasuda T, et al. The affinity of cholesterol for different phospholipids affects lateral segregation in bilayers. Biophys J. 2016;111(3):546-556.
Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The affinity of sterols for different phospholipid classes and its impact on lateral segregation. Biophys J. 2019;116(2):296-307.
Girard M, Bereau T. Regulating lipid composition rationalizes acyl tail saturation homeostasis in ectotherms. Biophys J. 2020;119(5):892-899.
Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim Biophys Acta Biomembr. 1990;1025(2):243-246.
Gerl MJ, Sampaio JL, Urban S, et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol. 2012;196(2):213-221.
Castello-Serrano I, Lorent JH, Ippolito R, Levental KR, Levental I. Myelin-associated MAL and PLP are unusual among multipass transmembrane proteins in preferring ordered membrane domains. J Phys Chem B. 2020;124:5930-5939.
Widenmaier SB, Snyder NA, Nguyen TB, et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell. 2017;171(5):1094-1109.
Lange Y, Steck TL. Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts. J Biol Chem. 1997;272(20):13103-13108.
Meza U, Delgado-Ramirez M, Romero-Mendez C, Sanchez-Armass S, Rodriguez-Menchaca AA. Functional marriage in plasma membrane: critical cholesterol level-optimal protein activity. Br J Pharmacol. 2020;177(11):2456-2465.
Yeagle PL, Young JE. Factors contributing to the distribution of cholesterol among phospholipid-vesicles. J Biol Chem. 1986;261(18):8175-8181.
Leventis R, Silvius JR. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001;81(4):2257-2267.
Niu SL, Litman BJ. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys J. 2002;83(6):3408-3415.
Gay A, Rye D, Radhakrishnan A. Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes. Biophys J. 2015;108(6):1459-1469.
Bollen IC, Higgins JA. Phospholipid asymmetry in rough- and smooth-endoplasmic-reticulum membranes of untreated and phenobarbital-treated rat liver. Biochem J. 1980;189(3):475-480.
Steck TL, Lange Y. Transverse distribution of plasma membrane bilayer cholesterol: picking sides. Traffic. 2018;19(10):750-760.
Buwaneka P, Ralko A, Liu S-L, Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J Lipid Res. 2021;62:100084.
Veatch SL, Keller SL. Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta. 2005;1746(3):172-185.
Aghaaminiha M, Farnoud AM, Sharma S. Quantitative relationship between cholesterol distribution and ordering of lipids in asymmetric lipid bilayers. Soft Matter. 2021;17:2742-2752.
Shaw TR, Ghosh S, Veatch SL. Critical phenomena in plasma membrane organization and function. Annu Rev Phys Chem. 2021;72(1):2.1-2.22.
Lange Y, Ye J, Duban ME, Steck TL. Activation of membrane cholesterol by 63 amphipaths. Biochemistry. 2009;48(36):8505-8515.
Maekawa M, Fairn GD. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci. 2015;128(7):1422-1433.
Lange Y, Ye J, Steck TL. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc Natl Acad Sci U S A. 2004;101(32):11664-11667.
Lange Y, Steck TL, Ye J, Lanier MH, Molugu V, Ory D. Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol. J Lipid Res. 2009;50(9):1881-1888.
Huber MD, Vesely PW, Datta K, Gerace L. Erlins restrict SREBP activation in the ER and regulate cellular cholesterol homeostasis. J Cell Biol. 2013;203(3):427-436.
Stevenson J, Huang EY, Olzmann JA. Endoplasmic reticulum-associated degradation and lipid homeostasis. In: Stover PJ, ed. Annual Review of Nutrition. Vol 36. Palo Alto: Annual Reviews; 2016:511-542.
Sharpe LJ, Howe V, Scott NA, et al. Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem. 2019;294(7):2436-2448.
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res. 2020;79:101033.
Lange Y, Ye J, Strebel F. Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells. J Lipid Res. 1995;36(5):1092-1097.
Meaney S, Bodin K, Diczfalusy U, Bjorkhem I. On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res. 2002;43(12):2130-2135.
Liu Y, Wei Z, Ma X, et al. 25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J Lipid Res. 2018;59(3):439-451.
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: from physiological tuners to pharmacological opportunities. Br J Pharmacol. 2021;178(16):3089-3103.
Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14(8):452-463.
Chang CCY, Lee CYG, Chang ET, Cruz JC, Levesque MC, Chang TY. Recombinant acyl-CoA: cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem. 1998;273(52):35132-35141.
Luo J, Jiang LY, Yang HY, Song BL. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem Sci. 2019;44(3):273-292.
Reinisch KM, Prinz WA. Mechanisms of nonvesicular lipid transport. J Cell Biol. 2021;220(3):11.
Naito T, Saheki Y. GRAMD1-mediated accessible cholesterol sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids. 1866;2021(8):158957-158964.
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic. 2020;21(2):200-219.
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim Biophys Acta Biomembr. 2015;1848(9):1908-1926.
Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic. 2011;12(10):1341-1355.
Menon AK. Sterol gradients in cells. Curr Opin Cell Biol. 2018;53:37-43.
Kentala H, Koponen A, Vihinen H, et al. OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Cell Mol Life Sci. 2018;75(21):4041-4057.
Wong LH, Gatta AT, Levine TP. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol. 2019;20(2):85-101.
Olkkonen VM, Li S. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res. 2013;52(4):529-538.
Wang HY, Bharti D, Levental I. Membrane heterogeneity beyond the plasma membrane. Front Cell Dev Biol. 2020;8:580814.
Wang H, Ma Q, Qi Y, et al. ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Mol Cell. 2019;73(3):458-473. e457.
Hasan MT, Chang CC, Chang TY. Somatic cell genetic and biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression. Somat Cell Mol Genet. 1994;20(3):183-194.
Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB. Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci U S A. 2005;102(41):14551-14556.
Lu F, Liang Q, Abi-Mosleh L, et al. Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. Elife. 2015;4:e12177.
Naito T, Ercan B, Krshnan L, et al. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. Elife. 2019;8:e51401.
Mouritsen OG, Zuckermann MJ. What's so special about cholesterol? Lipids. 2004;39(11):1101-1113.
Ernst R, Ballweg S, Levental I. Cellular mechanisms of physicochemical membrane homeostasis. Curr Opin Cell Biol. 2018;53:44-51.
Doktorova M, Symons JL, Levental I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol. 2020;16(12):1321-1330.
Radanovic T, Reinhard J, Ballweg S, Pesek K, Ernst R. An emerging group of membrane property sensors controls the physical state of organellar membranes to maintain their identity. Bioessays. 2018;40(5):9.