Use of complex physiological traits as ecotoxicological biomarkers in tropical freshwater fishes.
biomarker
critical oxygen level
critical swimming speed
critical thermal maximum
ecotoxicology
hypoxia
warming
Journal
Journal of experimental zoology. Part A, Ecological and integrative physiology
ISSN: 2471-5646
Titre abrégé: J Exp Zool A Ecol Integr Physiol
Pays: United States
ID NLM: 101710204
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
21
07
2021
received:
31
03
2021
accepted:
02
08
2021
pubmed:
17
9
2021
medline:
15
12
2021
entrez:
16
9
2021
Statut:
ppublish
Résumé
We review the use of complex physiological traits, of tolerance and performance, as biomarkers of the toxicological effects of contaminants in subtropical and tropical freshwater fishes. Such traits are growing in relevance due to climate change, as exposure to contaminants may influence the capacity of fishes to tolerate and perform in an increasingly stressful environment. We review the evidence that the critical oxygen level, a measure of hypoxia tolerance, provides a valuable biomarker of impacts of diverse classes of contaminants. When coupled with measures of cardiorespiratory variables, it can provide insight into mechanisms of toxicity. The critical thermal maximum, a simple measure of tolerance of acute warming, also provides a valuable biomarker despite a lack of understanding of its mechanistic basis. Its relative ease of application renders it useful in the rapid evaluation of multiple species, and in understanding how the severity of contaminant impacts depends upon prevailing environmental temperature. The critical swimming speed is a measure of exercise performance that is widely used as a biomarker in temperate species but very few studies have been performed on subtropical or tropical fishes. Overall, the review serves to highlight a critical lack of knowledge for subtropical and tropical freshwater fishes. There is a real need to expand the knowledge base and to use physiological biomarkers in support of decision making to manage tropical freshwater fish populations and their habitats, which sustain rich biodiversity but are under relentless anthropogenic pressure.
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
745-760Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Almeida-Val, V. M. F., Gomes, A. R. C., & Lopes, N. P. (2006). Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. In (Eds.) Val, A. L., Almeida-Val, V. M. F. & Randall, D. J., Fish Physiology (pp. 443-359). Heidelberg: Elsevier.
Anelli, L. C. Jr. (2010). Efeitos de diferentes formulações comerciais do herbicida Roundup® sobre a função cardiorespiratória de matrinxã, Brycon amazonicus (Teleostei, Characidae). [Doctoral dissertation, Federal University of São Carlos]. UA Campus Repository. https://repositorio.ufscar.br/handle/ufscar/1220
Antonijevic, B., & Stojiljkovic, M. P. (2007). Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clinical Medicine & Research, 5, 71-82.
Augustsson, A., Lennqvist, T., Osbeck, C. M. G., Tibblin, P., Glynn, A., Nguyen, M. A., Westberg, E., & Vestergren, R. (2021). Consumption of freshwater fish: A variable but significant risk factor for PFOS exposure. Environmental Research, 192, 110284.
Barreto, L. S., Souza, A. T. D. C., Martins, C. C., Araujo, S. B. L., & Oliveira Ribeiro, C. A. (2020). Urban effluents affect the early development stages of Brazilian fish species with implications for their population dynamics. Ecotoxicology and Environmental Safety, 188, 109907.
Beamish, F. W. H. (1978). Swimming capacity. In (Eds.) Hoar, W. S. & Randall, D. J., Fish Physiology (pp. 101-187). New York: Academic Press.
Beaumont, M., Butler, P., & Taylor, E. (1995). Plasma ammonia concentration in brown trout in soft acidic water and its relationship to decreased swimming performance. Journal of Experimental Biology, 198, 2213-2220.
Beaumont, M. W., Taylor, E. W., & Butler, P. J. (2000). The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water. Journal of Experimental Biology, 203, 2229-2236.
Beitinger, T., & Lutterschmidt, W. (2011). Temperature Measures of Thermal Tolerance. In (Ed.) Farrell, A. P., Encyclopedia of fish physiology: From genome to environment (pp. 1695-1702). Elsevier Ltd.
Beltrão, H., Zuanon, J., & Ferreira, E. (2019). Checklist of the ichthyofauna of the Rio Negro basin in Brazilian Amazon. ZooKeys, 881, 53-89.
Bergsson, H., Andersen, N. R., Svendsen, M. B. S., Hansen, P. J., & Steffensen, J. F. (2019). Respiratory physiology of european plaice (Pleuronectes platessa) exposed to Prymnesium parvum. Fishes, 4, 32.
Bilberg, K., Malte, H., Wang, T., & Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquatic Toxicology, 96, 159-165.
Blasco, F. R., Esbaugh, A. J., Killen, S. S., Rantin, F. T., Taylor, E. W., & McKenzie, D. J. (2020). Using aerobic exercise to evaluate sub-lethal tolerance of acute warming in fishes. Journal of Experimental Biology, 223, jeb218602.
Braz-Mota, S., Sadauskas-Henrique, H., Duarte, R. M., Val, A. L., & Almeida-Val, V. M. F. (2015). Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 135, 53-60.
Brett, J. R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Research Board of Canada, 21, 1183-1226.
Brett, J. R. (1958). Implications and assessments of environmental stress. In (Ed.) Larkin, P. A., The investigation of fish-power problems (pp. 69-93). Vancouver, BC: University of British Columbia.
Brijs, J., Jutfelt, F., Clark, T. D., Gräns, A., Ekström, A., & Sandblom, E. (2015). Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch. Journal of Experimental Biology, 218, 2448-2454.
Cairns, J. (1966). Don't be half-safe- the current revolution in bio-assay techniques. Proc. 21 St Ind. Waste Conf. Purdue Univ. Engng Extn Ser. No. 121.
Cairns, J. Jr. (1971). Thermal pollution: A cause for concern on. Water Pollution Control Federation, 43, 55-66.
Calow, P., & Forbes, V. E. (1998). How do physiological responses to stress translate into ecological and evolutionary processes? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 120, 11-16.
Carrier, R., & Beitinger, T. L. (1988). Reduction in thermal tolerance of Notropis lutrensis and Pimephales promelas exposed to cadmium. Water Research, 22, 511-515.
Cazenave, J., Bacchetta, C., Parma, M. J., Scarabotti, P. A., & Wunderlin, D. A. (2009). Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environmental Pollution, 157, 3025-3033.
Claireaux, G., & Chabot, D. (2016). Responses by fishes to environmental hypoxia: Integration through Fry's concept of aerobic metabolic scope. Journal of Fish Biology, 88, 232-251.
Comte, L., & Olden, J. D. (2017a). Climatic vulnerability of the world's freshwater and marine fishes. Nature Climate Change, 7, 718-722.
Comte, L., & Olden, J. D. (2017b). Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Global Change Biology, 23, 728-736.
Corriere, M., Baptista, M., Paula, J. R., Repolho, T., Rosa, R., Costa, P. R., & Soliño, L. (2020). Impaired fish swimming performance following dietary exposure to the marine phycotoxin okadaic acid. Toxicon, 179, 53-59.
Cossins, A. R., & Bowler, K. (1987). Temperature Biology of Animals. London: Chapman and Hall.
Costa, M. F., & Barletta, M. (2016). Special challenges in the conservation of fishes and aquatic environments of South America. Journal of Fish Biology, 89, 4-11.
Currie, S., & Schulte, P. M. (2014). Thermal stress. In (Eds.) Evans, D. H., Claiborne, J. & Currie, S., The physiology of fishes (pp. 257-279). Boca Raton: CRC Press.
Daam, M. A., & Van Den Brink, P. J. (2010). Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology, 19, 24-37.
Dale Becker, C., & Wolford, M. G. (1980). Thermal resistance of juvenile salmonids sublethally exposed to nickel, determined by the critical thermal maximum method. Environmental Pollution Series A, Ecological and Biological, 21, 181-189.
de Andrade Waldemarin, K. C., Alves, R. N., Beletti, M. E., Rantin, F. T., & Kalinin, A. L. (2012). Copper sulfate affects Nile tilapia (Oreochromis niloticus) cardiomyocytes structure and contractile function. Ecotoxicology, 21, 783-794.
Di Giulio, R. T., & Clark, B. W. (2015). The Elizabeth River story: A case study in evolutionary toxicology. Journal of Toxicology and Environmental Health Part B, 18, 259-298.
Dalzochio, T., Rodrigues, G. Z. P., Petry, I. E., Gehlen, G., & da Silva, L. B. (2016). The use of biomarkers to assess the health of aquatic ecosystems in Brazil: A review. International Aquatic Research, 8, 283-298.
Diaz, R. J., & Breitburg, D. L. (2009). Hypoxia. In (Eds) Richards, J. G., Farrell, A. P. & Brauner, C. J., Hypoxia, Fish Physiology (27, pp. 1-23). Physiology. Elsevier.
Domenici, P. (2010). Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. Journal Experimental Zoology Part A: Ecological and Integrative Physiology, 313, 59-79.
Domenici, P., & Hale, M. E. (2019). Escape responses of fish: A review of the diversity in motor control, kinematics and behaviour. Journal of Experimental Biology, 222, jeb166009.
Driedzic, W. R., & Gesser, H. (1994). Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis, and low temperature. Physiological Reviews, 74, 221-258.
Duponchelle, F., Pouilly, M., Pécheyran, C., Hauser, M., Renno, J. F., Panfili, J., Darnaude, A. M., García-Vasquez, A., Carvajal-Vallejos, F., García-Dávila, C., Doria, C., Bérail, S., Donard, A., Sondag, F., Santos, R. V., Nuñez, J., Point, D., Labonne, M., & Baras, E. (2016). Trans-Amazonian natal homing in giant catfish. Journal of Applied Ecology, 53, 1511-1520.
Farrell, A. P. (2007). Tribute to P.L. Lutz: a message from the heart--why hypoxic bradycardia in fishes? Journal of Experimental Biology (210, pp. 1715-1725).
Folkerts, E. J., Blewett, T. A., He, Y., & Goss, G. G. (2017). Alterations to juvenile zebrafish (Danio rerio) swim performance after acute embryonic exposure to sub-lethal exposures of hydraulic fracturing flowback and produced water. Aquatic Toxicology, 193, 50-59.
Folkerts, E. J., Heuer, R. M., Flynn, S., Stieglitz, J. D., Benetti, D. D., Alessi, D. S., Goss, G. G., & Grosell, M. (2020). Exposure to hydraulic fracturing flowback water impairs mahi-mahi (Coryphaena hippurus) cardiomyocyte contractile function and swimming performance. Environmental Science & Technology, 54, 13579-13589.
Fry, F. E. J. (1971). The effect of environmental factors on the physiology of fish. In (Eds.) Hoar, W. S. & Randall, D. J., Fish physiology (6, pp. 1-98). New York: Academic Press.
Gamperl, A. K., & Driedzic, W. R. (2009). Cardiovascular function and cardiac metabolism. In (Eds.) Richards, J. G., Farrell, A. P. & Brauner, C. J., Fish Physiology (27, pp. 301-360). Academic Press.
Gerger, C. J., Thomas, J. K., Janz, D. M., Weber, L. P., Gerger, C. J., Thomas, J. K., Janz, A. D. M., & Weber, A. L. P. (2015). Acute effects of b-naphthoflavone on cardiorespiratory function and metabolism in adult zebrafish (Danio rerio). Fish Physiology Biochemistry, 41, 289-298.
Goertzen, M. M., Hauck, D. W., Phibbs, J., Weber, L. P., & Janz, D. M. (2012). Swim performance and energy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of a uranium mill. Ecotoxicology and Environmental Safety, 75, 142-150.
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2020a). Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance. Journal of Experimental Biology, 223, jeb224444.
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2020b). Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish. Conservation Physiology, 8, 1-15.
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2021a). Exposure to nitrate increases susceptibility to hypoxia in fish. Physiological and Biochemical Zoology, 94, 124-142.
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2021b). Thermal plasticity of the cardiorespiratory system provides cross-tolerance protection to fish exposed to elevated nitrate. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 240, 108920.
Green, A. J., & Planchart, A. (2018). The neurological toxicity of heavy metals: A fish perspective. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 208, 12-19.
Gupta, U., & Guha, S. (2006). Microcystin toxicity in a freshwater fish, Heteropneustes fossilis (Bloch). Current Science, 91, 1261-1271.
Healy, T. M., Brennan, R. S., Whitehead, A., & Schulte, P. M. (2018). Tolerance traits related to climate change resilience are independent and polygenic. Global Change Biology, 24, 5348-5360.
Higgins, J., Zablocki, J., Newsock, A., Krolopp, A., Tabas, P., & Salama, M. (2021). Durable freshwater protection: A framework for establishing and maintaining long-term protection for freshwater ecosystems and the values they sustain. Sustainability, 13, 1-17.
Hogan, Z., Baird, I. G., Radtke, R., & Vander Zanden, M. J. (2007). Long distance migration and marine habitation in the tropical Asian catfish, Pangasius krempfi. Journal of Fish Biology, 71, 818-832.
Holt, M. S. (2000). Sources of chemical contaminants and routes into the freshwater environment. Food and Chemical Toxicology, 38, S21-S27.
Hook, S. E., Gallagher, E. P., & Batley, G. E. (2014). The role of biomarkers in the assessment of aquatic ecosystem health. Integrated environmental assessment and management, 10, 327-341.
Incardona, J. P., Collier, T. K., & Scholz, N. L. (2004). Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology, 196, 191-205.
Incardona, J. P., & Scholz, N. L. (2017). Environmental pollution and the fish heart. In (Eds.) Gamperl, A. K., Gillis, T. E., Farrell, A. P. & Brauner, C. J., Fish Physiology (36, pp. 373-433). Academic Press.
Isaza, D. G. (2020). Anthropogenic disturbances to freshwater taxa: Interactions between nitrate and additional stressors on various physiological traits. PhD Thesis School of Biological Sciences, The University of Queensland. https://doi.org/10.14264/ea9709d
Islam, S. M. M., Rahman, M. A., Nahar, S., Uddin, M. H., Haque, M. M., & Shahjahan, M. (2019). Acute toxicity of an organophosphate insecticide sumithion to striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 6, 957-962.
Jensen, F. B. (2003). Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 135, 9-24.
Jobling, S., & Tyler, C. R. (2003). Endocrine disruption in wild freshwater fish. Pure and Applied Chemistry, 75, 2219-2234.
Johnson, C. R. (1978). The effects of sublethal concentrations of five organophosphorus insecticides on temperature tolerance, reflexes, and orientation in Gambusia affinis affinis (Pisces: Poeciliidae). Zoological Journal of the Linnean Society, 64, 63-70.
Joyce, W., Simonsen, M., Gesser, H., & Wang, T. (2016). The effects of hypoxic bradycardia and extracellular HCO3-/CO2 on hypoxic performance in the eel heart. Journal of Experimental Biology, 219, 302-305.
Jutfelt, F., Roche, D. G., Clark, T. D., Norin, T., Binning, S. A., Speers-Roesch, B., Amcoff, M., Morgan, R., Andreassen, A. H., & Sundin, J. (2019). Brain cooling marginally increases acute upper thermal tolerance in Atlantic cod. Journal of Experimental Biology, 222, jeb208249.
Khursigara, A. J., Ackerly, K. L., & Esbaugh, A. J. (2019). Oil toxicity and implications for environmental tolerance in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 220, 52-61.
Kroon, F., Streten, C., & Harries, S. (2017). A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS One, 12, e0174762.
Kumar, N., Ambasankar, K., Krishnani, K. K., Kumar, P., Akhtar, M. S., Bhushan, S., & Minhas, P. S. (2016). Dietary pyridoxine potentiates thermal tolerance, heat shock protein and protect against cellular stress of Milkfish (Chanos chanos) under endosulfan-induced stress. Fish & Shellfish Immunology, 55, 407-414.
Kumar, N., Krishnani, K. K., Chandan, N. K., & Singh, N. P. (2018). Dietary zinc potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under lead and thermal stress. Aquaculture Research, 49, 1105-1115.
Kumar, N., Krishnani, K. K., Gupta, S. K., & Singh, N. P. (2017). Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respiratory Physiology & Neurobiology, 246, 107-116.
Lacher, T. E., & Goldstein, M. I. (1997). Tropical ecotoxicology: Status and needs. Environmental Toxicology and Chemistry, 16, 100-111.
Langiano, V. do C., & Martinez, C. B. (2008). Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 147, 22-231.
Lefevre, S., Wang, T., & McKenzie, D. J. (2021). The role of mechanistic physiology in investigating impacts of global warming on fishes. Journal of Experimental Biology, 224, jeb238840.
Lewis, W. M., & Morris, D. P. (1986). Toxicity of nitrite to fish: A Review. Transactions of the American Fisheries Society, 115, 183-195.
Little, E. E., & Finger, S. E. (1990). Swimming behavior as an indicator of sublethal toxicity in fish. Environmental Toxicology and Chemistry, 9, 13-19.
Lucas, J., Percelay, I., Larcher, T., & Lefrançois, C. (2016). Effects of pyrolytic and petrogenic polycyclic aromatic hydrocarbons on swimming and metabolic performance of zebrafish contaminated by ingestion. Ecotoxicology and Environmental Safety, 132, 145-152.
Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75, 1561-1574.
Mandic, M., Todgham, A. E., & Richards, J. G. (2009). Mechanisms and evolution of hypoxia tolerance in fish. Proceedings. Biological Sciences B, 276, 735-744.
Martins, N. D., Colvara, W., Rantin, F. T., & Kalinin, A. L. (2011). Microcystin-LR: How it affects the cardio-respiratory responses to hypoxia in Nile tilapia, Oreochromis niloticus. Chemosphere, 84, 154-159.
Martins, N. D., Yunes, J. S., McKenzie, D. J., Rantin, F. T., Kalinin, A. L., & Monteiro, D. A. (2019). Microcystin-LR exposure causes cardiorespiratory impairments and tissue oxidative dama ge in trahira, Hoplias malabarius. Ecotoxicology and Environmental Safety, 173, 436-443.
Martins, N. D., Yunes, J. S., Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2017). Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon amazonicus (SPIX & AGASSIZ, 1829). Toxicon, 139, 109-116.
Martins, N. F. (2018). Efeitos do contaminante emergente triclosan sobre a função cardiorespiratória do matrinxã, Brycon amazonicus, em normóxia e durante hipóxia gradual. [Doctoral dissertation, Federal University of São Carlos]. UA Campus Repository. https://repositorio.ufscar.br/handle/ufscar/10718
Mason, C. F. (2002). Biology of freshwater pollution. London: Pearson Education.
Matson, C. W., Timme-Laragy, A. R., & Di Giulio, R. T. (2008). Fluoranthene, but not benzo[a]pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere, 74, 149-154.
McDonnell, L. H., Reemeyer, J. E., & Chapman, L. J. (2019). Independent and interactive effects of long-term exposure to hypoxia and elevated water temperature on behavior and thermal tolerance of an equatorial cichlid. Physiological and Biochemical Zoology, 92, 253-265.
McKenzie, D. J., Blasco, F. R., Belão, T. C., Killen, S. S., Martins, N. D., Taylor, E. W., & Rantin, F. T. (2017). Physiological determinants of individual variation in sensitivity to an organophosphate pesticide in Nile tilapia Oreochromis niloticus. Aquatic Toxicology, 189, 108-114.
McKenzie, D. J., Garofalo, E., Winter, M. J., Ceradini, S., Verweij, F., Day, N., Hayes, R., van der Oost, R., Butler, P. J., Chipman, J. K., & Taylor, E. W. (2007). Complex physiological traits as biomarkers of the sub-lethal toxicological effects of pollutant exposure in fishes. Philosophical Transactions of the Royal Society B, 362, 2043-2059.
McKenzie, D. J., Shingles, A., Claireaux, G., & Domenici, P. (2009). Sublethal Concentrations of Ammonia Impair Performance of the Teleost Fast-Start Escape Response. Physiological and Biochemical Zoology, 82, 353-362.
McKenzie, D. J., Zhang, Y., Eliason, E. J., Schulte, P. M., Blasco, F. R., Claireaux, G., Nati, J. J. H., & Farrell, A. P. (2020). Intraspecific variation in tolerance of warming in fishes. Journal of Fish Biology, 98, 1-20. https://doi.org/10.1111/jfb.14620
McRae, N. K., Gaw, S., & Glover, C. N. (2018). Effects of waterborne cadmium on metabolic rate, oxidative stress, and ion regulation in the freshwater fish, inanga (Galaxias maculatus). Aquatic Toxicology, 194, 1-9.
Menéndez-Helman, R. J., Ferreyroa, G. V., dos Santos Afonso, M., & Salibián, A. (2012). Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bulletin of Environmental Contamination and Toxicology, 88, 6-9.
Messaad, I. A., Peters, E. J., & Young, L. (2000). Thermal tolerance of red shiner (Cyprinella lutrensis) after exposure to atrazine, terbufos, and their mixtures. Bulletin of Environmental Contamination and Toxicology, 64, 748-754.
Modesto, K. A., & Martinez, C. B. (2010). Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere, 81, 781-787.
Monteiro, D. A., Taylor, E. W., McKenzie, D. J., Rantin, F. T., & Kalinin, A. L. (2020). Interactive effects of mercury exposure and hypoxia on ECG patterns in two Neotropical freshwater fish species: Matrinxã, Brycon amazonicus and traíra, Hoplias malabaricus. Ecotoxicology, 29, 375-388.
Monteiro, D. A., Taylor, E. W., Rantin, F. T., & Kalinin, A. L. (2017). Impact of waterborne and trophic mercury exposures on cardiac function of two ecologically distinct Neotropical freshwater fish Brycon amazonicus and Hoplias malabaricus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 201, 26-34.
Monteiro, D. A., Thomaz, J. M., Rantin, F. T., & Kalinin, A. L. (2013). Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus) after waterborne or trophic exposure to inorganic mercury. Aquatic Toxicology, 140(41), 346-355.
Mu, J., Chernick, M., Dong, W., Di Giulio, R. T., & Hinton, D. E. (2017). Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). Aquatic Toxicology, 190, 162-173.
Noyes, P. D., & Lema, S. C. (2015). Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Current Zoology, 61, 669-689.
Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35, 971-986.
Olle, C. D. (2007). Efeito do inseticida organofosforado metilparation (Folisuper 600BR) sobre a função cardio-respiratória do peixe teleósteo matrinxã, Brycon cephalus. [Doctoral dissertation, Federal University of São Carlos]. UA Campus Repository. https://repositorio.ufscar.br/handle/ufscar/1207
Patra, R. W., Chapman, J. C., Lim, R. P., & Gehrke, P. C. (2007). The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environmental Toxicology and Chemistry, 26, 1454-1459.
Patra, R. W., Chapman, J. C., Lim, R. P., Gehrke, P. C., & Sunderam, R. M. (2015). Interactions between water temperature and contaminant toxicity to freshwater fish. Environmental Toxicology and Chemistry, 34, 1809-1817.
Peakall, D. B. (1994). The role of biomarkers in environmental assessment. Ecotoxicology, 3, 157-160.
Pereira, L., Fernandes, M. N., & Martinez, C. B. (2013). Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environmental Toxicology and Pharmacology, 36, 1-8.
Pérez-Parada, A., Goyenola, G., Teixeira de Mello, F., & Heinzen, H. (2018). Recent advances and open questions around pesticide dynamics and effects on freshwater fishes. Current Opinion in Environmental Science & Health, 4, 38-44.
Perry, S. F., Jonz, M. G., & Gilmour, K. M. (2009). Oxygen sensing and the hypoxic ventilatory response. In (Eds) Richards, J. G., Farrell, A. P. & Brauner, C. J., Hypoxia, Fish Physiology (27, pp. 194-255). Academic Press, Elsevier.
Philippe, C., Hautekiet, P., Grégoir, A. F., Thoré, E. S. J., Brendonck, L., De Boeck, G., & Pinceel, T. (2019). Interactive effects of 3,4-DCA and temperature on the annual killifish Nothobranchius furzeri. Aquatic Toxicology, 212, 146-153.
Philippe, C., Hautekiet, P., Grégoir, A. F., Thoré, E. S. J., Pinceel, T., Stoks, R., Brendonck, L., & De Boeck, G. (2018). Combined effects of cadmium exposure and temperature on the annual killifish (Nothobranchius furzeri). Environmental Toxicology and Chemistry, 37, 2361-2371.
Pollock, M. S., Clarke, L. M. J., & Dubé, M. G. (2007). The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews, 15, 1-14.
Pörtner, H. O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213, 881-893.
Pullaguri, N., Grover, P., Abhishek, S., Rajakumara, E., Bhargava, Y., & Bhargava, A. (2021). Triclosan affects motor function in zebrafish larva by inhibiting ache and syn2a genes. Chemosphere, 266, 128930.
Rahman, M. S., & Thomas, P. (2018). Interactive effects of hypoxia and PCB co-exposure on expression of CYP1A and its potential regulators in Atlantic croaker liver. Environmental Toxicology, 33, 411-421.
Rantin, F. T., Kalinin, A., & Monteiro, D. A. (2020). The cardiovascular system. In (Eds.) Baldisserotto, B., Urbinati, E. C. & Cyrino, J. E. P., Biology and physiology of freshwater neotropical fish (1st ed., pp. 185-216). Academic Press, Elsevier Inc.
Rantin, F. T., Kalinin, A. L., Guerra, C. D. R., Maricondi-Massari, M., & Verzola, R. M. M. (1995). Electrocardiographic characterization of myocardial function in normoxic and hypoxic teleosts. Brazilian Journal of Medical and Biological Research, 28, 1277-1289.
Regan, M. D., Gill, I. S., & Richards, J. G. (2017). Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments. Journal of Experimental Biology, 220, 564-572.
Regan, M. D., Mandic, M., Dhillon, R. S., Lau, G. Y., Farrell, A. P., Schulte, P. M., Seibel, B. A., Speers-Roesch, B., Ultsch, G. R., & Richards, J. G. (2019). Don't throw the fish out with the respirometry water. Journal of Experimental Biology, 222, 9-10.
Rezende, E. L., & Bozinovic, F. (2019). Thermal performance across levels of biological organization. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374, 20180549.
Rezende, E. L., Castañeda, L. E., & Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology, 28, 799-809.
Richards, J. G. (2009). Metabolic and molecular responses of fish to hypoxia. In (Eds.) Richards, J. G., Farrell, A. P. & Brauner, C. J., Fish Physiology (27, pp. 301-360). Academic Press.
Rodgers, E. M., & De Boeck, G. (2019). Nitrite-induced reductions in heat tolerance are independent of aerobic scope in a freshwater teleost. Journal of Experimental Biology, 222, jeb212035.
Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J., & Wilson, R. W. (2016). A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conservation Physiology, 4, cow012.
Saaristo, M., Brodin, T., Balshine, S., Bertram, M. G., Brooks, B. W., Ehlman, S. M., McCallum, E. S., Sih, A., Sundin, J., Wong, B. B. M., & Arnold, K. E. (2018). Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proceedings of the Royal Society B: Biological Sciences, 285, 20181297.
Sancho, E., Ferrando, M. D., & Andreu, E. (1998). In vivo inhibition of AChE activity in the European eel Anguilla anguilla exposed to technical grade fenitrothion. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 120, 389-395.
Schjolden, J., Sørensen, J., Nilsson, G. E., & Poléo, A. B. S. (2007). The toxicity of copper to crucian carp (Carassius carassius) in soft water. Science of the Total Environment, 384, 239-251.
Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218, 1856-1866.
Schulte, P. M., Healy, T. M., & Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and comparative biology, 51, 691-702.
Shingles, A., McKenzie, D. J., Taylor, E. W., Moretti, A., Butler, P. J., & Ceradini, S. (2001). Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 204, 2691-2698.
Shiogiri, N. S., Paulino, M. G., Carraschi, S. P., Baraldi, F. G., Cruz, C., & Fernandes, M. N. (2012). Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environmental Toxicology and Pharmacology, 34, 388-396.
Sokolova, I. M., & Lannig, G. (2008). Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Climate Research, 37, 181-201.
Speranza, E. D., Colombo, M., Tatone, L. M., Cappelletti, N., Migoya, M. C., & Colombo, J. C. (2016). Fatty acid alterations in the detritivorous Prochilodus lineatus promoted by opportunistic feeding on sewage discharges in the Río de la Plata estuary. Journal of Fish Biology, 89, 2024-2037.
Sprague, J. B. (1971). Measurement of pollutant toxicity to fish III: Sublethal effects and “safe” concentrations. Water Research, 5, 245-266.
Stauffer, J. (1998). The water crisis: Constructing solutions to freshwater pollution. London: Earthscan.
Stieglitz, J. D., Mager, E. M., Hoenig, R. H., Benetti, D. D., & Grosell, M. (2016). Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environmental Toxicology and Chemistry, 35, 2613-2622.
Stillman, J. H. (2019). Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology, 34, 86-100.
Suresh, A., Sivaramakrishna, B., Victoriamma, P. C., & Radhakrishnaiah, K. (1992). Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc. Biochemistry International, 26, 367-375.
Takle, J. C. C., Beitinger, T. L., & Dickson, K. L. (1983). Effect of the aquatic herbicide endothal on the critical thermal maximum of red shiner, Notropis lutrensis. Bulletin of Environmental Contamination and Toxicology, 31, 512-517.
Thomas, J. K., & Janz, D. M. (2011). Dietary selenomethionine exposure in adult zebrafish alters swimming performance, energetics and the physiological stress response. Aquatic Toxicology, 102, 79-86.
Thomaz, J. M., Martins, N. D., Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2009). Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON®). Ecotoxicology Environmental Safety, 72, 1413-1424.
Tierney, K., Casselman, M., Takeda, S., Farrell, T., & Kennedy, C. (2007). The relationship between cholinesterase inhibition and two types of swimming performance in chlorpyrifos-exposed coho salmon (Oncorhynchus kisutch). Environmental Toxicology and Chemistry, 26, 998-1004.
Tudorache, C., Blust, R., & De Boeck, G. (2008). ). Social interactions, predation behaviour and fast start performance are affected by ammonia exposure in brown trout (Salmo trutta L.). Aquatic Toxicology, 90, 145-153.
Ultsch, G. R., & Regan, M. D. (2019). The utility and determination of Pcrit in fishes. Journal of Experimental Biology, 222, 1-9.
van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57-149.
van der Oost, R., McKenzie, D. J., Verweij, F., Satumalay, C., van der Molen, N., Winter, M. J., & Chipman, J. K. (2020). Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring. Environmental Toxicology and Pharmacology, 74, 103301.
Wagner, M., & Lambert, S. (2018). Microplastics are contaminants of emerging concern in freshwater environments: An overview. In (Eds.), Wagner, M. & Lambert, S., Freshwater microplastics. emerging environmental contaminants (pp. 1-24). The Handbo. Springer Open.
Wang, H., Liang, Y., Li, S., & Chang, J. (2013). Acute toxicity, respiratory reaction, and sensitivity of three cyprinid fish species caused by exposure to four heavy metals. PLoS One, 8, e65282.
Wang, T., Lefevre, S., Iversen, N. K., Findorf, I., Buchanan, R., & McKenzie, D. J. (2014). Anaemia only causes a small reduction in the upper critical temperature of sea bass: Is oxygen delivery the limiting factor for tolerance of acute warming in fishes? Journal of Experimental Biology, 217, 4275-4278.
Wang, Z., Kwok, K. W., & Leung, K. M. (2019). Comparison of temperate and tropical freshwater species' acute sensitivities to chemicals: An update. Integrated environmental assessment and management, 15, 352-363.
Watenpaugh, D. E., Beitinger, T. L., & Huey, D. W. (1985). Temperature tolerance of nitrite-exposed catfish. Transactions of the American Fisheries Society, 114, 274-278.
Williams, C. M., Buckley, L. B., Sheldon, K. S., Vickers, M., Pörtner, H. O., Dowd, W. W., Gunderson, A. R., Marshall, K. E., & Stillman, J. H. (2016). Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integrative and comparative biology, 56, 73-84.
Wood, A. W., Johnston, B. D., Farrell, A. P., & Kennedy, C. J. (1996). Effects of didecyldimethylammonium chloride (DDAC) on the swimming performance, gill morphology, disease resistance, and biochemistry of rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 53, 2424-2432.
Wood, C. M. (2018). The fallacy of the Pcrit - Are there more useful alternatives? Journal of Experimental Biology, 221, jeb163717.
Xia, J. G., Nie, L. J., Mi, X. M., Wang, W. Z., Ma, Y. J., Cao, Z. D., & Fu, S. J. (2015). Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures. Fish Physiology Biochemistry, 41, 1293-1304.
Yang, R., Brauner, C., Thurston, V., Neuman, J., & Randall, D. (2000). Relationship between toxicant transfer kinetic processes and fish oxygen consumption. Aquatic Toxicology, 48, 95-108.
Zebral, Y. D., Lansini, L. R., Costa, P. G., Roza, M., Bianchini, A., & Robaldo, R. B. (2018). A glyphosate-based herbicide reduces fertility, embryonic upper thermal tolerance and alters embryonic diapause of the threatened annual fish Austrolebias nigrofasciatus. Chemosphere, 196, 260-269.