Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
09 2021
Historique:
received: 19 01 2021
accepted: 14 07 2021
revised: 08 10 2021
pubmed: 17 9 2021
medline: 15 12 2021
entrez: 16 9 2021
Statut: epublish

Résumé

Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations-such as measurement error-as compared to systematic deviations-such as individual differences-are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability, which quantifies the degree to which an individual's samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error.

Identifiants

pubmed: 34529652
doi: 10.1371/journal.pcbi.1009279
pii: PCOMPBIOL-D-21-00089
pmc: PMC8500408
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1009279

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH120482
Pays : United States

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

PLoS One. 2019 May 15;14(5):e0216125
pubmed: 31091251
Sci Transl Med. 2016 Jun 1;8(341):341ps12
pubmed: 27252173
Perspect Psychol Sci. 2016 Jul;11(4):539-44
pubmed: 27474140
Psychol Bull. 1979 Mar;86(2):420-8
pubmed: 18839484
Neuroimage. 2017 Apr 15;150:213-229
pubmed: 28213118
IEEE Trans Biomed Eng. 2004 Oct;51(10):1784-93
pubmed: 15490825
IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):27-41
pubmed: 16568935
Cell Stem Cell. 2017 Apr 6;20(4):518-532.e9
pubmed: 28017796
Hum Brain Mapp. 1999;8(2-3):109-14
pubmed: 10524601
Nat Rev Genet. 2010 Oct;11(10):733-9
pubmed: 20838408
Elife. 2019 Jan 15;8:
pubmed: 30644820
Neuroimage. 2020 Jul 1;214:116678
pubmed: 32119986
Neural Comput. 2005 Jul;17(7):1480-507
pubmed: 15901405
Neuroimage. 2002 Apr;15(4):772-86
pubmed: 11906219
PLoS Med. 2005 Aug;2(8):e124
pubmed: 16060722
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4858-4863
pubmed: 32075918
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
pubmed: 20176931
Neuroimage. 2002 Apr;15(4):747-71
pubmed: 11906218
Nat Hum Behav. 2019 Aug;3(8):768-771
pubmed: 31253883
Neuroimage. 2017 Jul 1;154:169-173
pubmed: 27888059
Nat Neurosci. 2015 Nov;18(11):1664-71
pubmed: 26457551
Cereb Cortex. 2017 Nov 1;27(11):5415-5429
pubmed: 28968754
Gigascience. 2017 Feb 1;6(2):1-14
pubmed: 28369458
Nature. 2015 Apr 30;520(7549):612
pubmed: 25925460
PLoS One. 2015 Jul 10;10(7):e0131520
pubmed: 26161667
Sci Data. 2014 Dec 09;1:140049
pubmed: 25977800
Neuroimage. 2010 Feb 1;49(3):2163-77
pubmed: 19896537

Auteurs

Eric W Bridgeford (EW)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Shangsi Wang (S)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Zeyi Wang (Z)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Ting Xu (T)

Child Mind Institute, New York, New York, United States of America.

Cameron Craddock (C)

Child Mind Institute, New York, New York, United States of America.

Jayanta Dey (J)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Gregory Kiar (G)

McGill University, Montreal, Quebec, Canada.

William Gray-Roncal (W)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Carlo Colantuoni (C)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Christopher Douville (C)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Stephanie Noble (S)

Yale University, New Haven, Connecticut, United States of America.

Carey E Priebe (CE)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Brian Caffo (B)

Johns Hopkins University, Baltimore, Maryland, United States of America.

Michael Milham (M)

Child Mind Institute, New York, New York, United States of America.

Xi-Nian Zuo (XN)

State Key Laboratory of Cognitive Neuroscience and Learning, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

Joshua T Vogelstein (JT)

Johns Hopkins University, Baltimore, Maryland, United States of America.
Progressive Learning, Baltimore, Maryland, United States of America.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH