Strength can be controlled by edge dislocations in refractory high-entropy alloys.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
16 Sep 2021
Historique:
received: 30 11 2020
accepted: 31 08 2021
entrez: 17 9 2021
pubmed: 18 9 2021
medline: 18 9 2021
Statut: epublish

Résumé

Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent "high-entropy alloys (HEAs)" based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10

Identifiants

pubmed: 34531394
doi: 10.1038/s41467-021-25807-w
pii: 10.1038/s41467-021-25807-w
pmc: PMC8446014
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5474

Informations de copyright

© 2021. The Author(s).

Références

Science. 2013 Feb 1;339(6119):535-9
pubmed: 23372006
Nat Mater. 2016 Aug;15(8):876-81
pubmed: 27322822
Science. 2020 Oct 2;370(6512):95-101
pubmed: 33004516
Sci Adv. 2020 Sep 9;6(37):
pubmed: 32917694
Science. 2014 Sep 5;345(6201):1153-8
pubmed: 25190791
Nature. 2016 May 18;534(7606):227-30
pubmed: 27279217
Science. 2005 Dec 9;310(5754):1665-7
pubmed: 16339441
Science. 2018 Jan 26;359(6374):447-452
pubmed: 29371467
Nat Commun. 2016 Nov 22;7:13434
pubmed: 27874007
Nature. 2017 Sep 20;549(7672):365-369
pubmed: 28933439
Nature. 2018 Nov;563(7732):546-550
pubmed: 30429610

Auteurs

Chanho Lee (C)

Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996-2100, USA.
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Francesco Maresca (F)

Engineering and Technology Institute (ENTEG), Faculty of Science and Engineering, University of Groningen, Groningen, 9747AG, Netherlands. f.maresca@rug.nl.
Laboratory for Multiscale Mechanics Modeling, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland. f.maresca@rug.nl.

Rui Feng (R)

Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996-2100, USA.
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Yi Chou (Y)

Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.

T Ungar (T)

Department of Materials Physics, Eötvös University, Budapest, P.O. Box 32, H-1518, Hungary.

Michael Widom (M)

Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Ke An (K)

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Jonathan D Poplawsky (JD)

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Yi-Chia Chou (YC)

Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.

Peter K Liaw (PK)

Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996-2100, USA. pliaw@utk.edu.

W A Curtin (WA)

Laboratory for Multiscale Mechanics Modeling, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.

Classifications MeSH