The anti-tumour effect of induced pluripotent stem cells against submandibular gland carcinoma in rats is achieved via modulation of the apoptotic response and the expression of Sirt-1, TGF-β, and MALAT-1 in cancer cells.
Animals
Apoptosis
Carcinoma, Squamous Cell
/ metabolism
Cell Line, Tumor
Induced Pluripotent Stem Cells
/ metabolism
Male
RNA, Long Noncoding
/ biosynthesis
RNA, Neoplasm
/ biosynthesis
Rats
Rats, Wistar
Salivary Gland Neoplasms
/ metabolism
Sirtuin 1
/ biosynthesis
Submandibular Gland
/ metabolism
Transforming Growth Factor beta
/ biosynthesis
bcl-2-Associated X Protein
/ biosynthesis
Immunohistochemistry
Induced pluripotent stem cells
MALAT-1
Sirt-1
Submandibular salivary cancer
TGF-β gene expressions
lncRNA
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
24
04
2021
accepted:
31
08
2021
pubmed:
18
9
2021
medline:
15
3
2022
entrez:
17
9
2021
Statut:
ppublish
Résumé
The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems of stem cell transplant rejection. The anti-tumour potential of iPSCs against many tumours including salivary cancer was proven in previous studies. The current study aimed to investigate the contribution of the Bax, Sirt-1, TGF-β, and MALAT genes and/or their protein expression to the pathogenesis of submandibular carcinogenesis before and after iPSCs treatment. Thirty Wistar albino rats were equally assigned into three groups: group I (control), group II (Squamous cell carcinoma (SCC)): submandibular glands were injected SCC cells, and group III (SCC/iPSCs): SCC rats were treated by 5 × 10
Identifiants
pubmed: 34533647
doi: 10.1007/s11010-021-04255-6
pii: 10.1007/s11010-021-04255-6
doi:
Substances chimiques
Bax protein, rat
0
MALAT1 long noncoding RNA, rat
0
RNA, Long Noncoding
0
RNA, Neoplasm
0
Transforming Growth Factor beta
0
bcl-2-Associated X Protein
0
Sirt1 protein, rat
EC 3.5.1.-
Sirtuin 1
EC 3.5.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
53-65Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Speight PM, Barrett AW (2020) Salivary gland tumours: diagnostic challenges and an update on the latest WHO classification. Diagn Histopathol 26:147–158
doi: 10.1016/j.mpdhp.2020.01.001
Şahin MM, Demircan V, Göcek M et al (2020) Submandibular gland cancers: prognostic factors and survival analysis. Eur Arch Oto-Rhino-Laryngol 277(8):1–7
doi: 10.1007/s00405-020-05924-w
Kusafuka K, Kawasaki T, Onitsuka T et al (2020) Acantholytic squamous cell carcinoma and salivary duct carcinoma ex-pleomorphic adenoma of the submandibular gland: a report of two extremely rare cases with an immunohistochemical analysis. Head Neck Pathol 14:230–238
doi: 10.1007/s12105-018-0987-2
Wang X, Luo Y, Li M et al (2017) Management of salivary gland carcinomas-a review. Oncotarget 8:3946
doi: 10.18632/oncotarget.13952
Chansaenroj A, Yodmuang S, Ferreira JN (2020) Trends in salivary gland tissue engineering: from stem cells to secretome and organoid bioprinting. Tissue Eng Part B Rev 27(2):155–165
doi: 10.1089/ten.teb.2020.0149
Bragança J, Lopes JA, Mendes-Silva L, Santos JMA (2019) Induced pluripotent stem cells, a giant leap for mankind therapeutic applications. World J Stem Cells 11:421
doi: 10.4252/wjsc.v11.i7.421
Alaa El-Din Y, Sabry D, Abdelrahman AH, Fathy S (2019) Potential therapeutic effects of induced pluripotent stem cells on induced salivary gland cancer in experimental rats. Biotech Histochem 94:92–99
doi: 10.1080/10520295.2018.1508747
Lekka E, Hall J (2018) Noncoding RNAs in disease. FEBS Lett 592:2884–2900. https://doi.org/10.1002/1873-3468.13182
doi: 10.1002/1873-3468.13182
pubmed: 29972883
pmcid: 6174949
Islam S, Abiko Y, Uehara O, Chiba I (2019) Sirtuin 1 and oral cancer. Oncol Lett 17:729–738
pubmed: 30655824
Bellomo C, Caja L, Moustakas A (2016) Transforming growth factor β as regulator of cancer stemness and metastasis. Br J Cancer 115:761–769
doi: 10.1038/bjc.2016.255
NIH (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, New York, USA
Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872
doi: 10.1016/j.cell.2007.11.019
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262
Tataurov AV, You Y, Owczarzy R (2008) Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys Chem 133:66–70
doi: 10.1016/j.bpc.2007.12.004
Koch RJ, Barrette AM, Stern AD et al (2018) Validating antibodies for quantitative western blot measurements with microwestern array. Sci Rep 8:1–10
doi: 10.1038/s41598-018-29436-0
Bancroft JD, Layton C (2019) The Hematoxylins and eosin/connective and other mesenchymal tissues with their stains. In: Suvarna KS, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques E-Book, 8th edn. Elsevier Health Sciences, Amsterdam
Kiernan JA (2015) Immunohistochemistry. In: Kiernan J (ed) Histological and histochemical methods. Theory and practice, 4th edn. Scion Publishing Ltd, England, pp 454–490
Anneroth G, Batsakis JGL, Mario (1986) Malignancy grading of squamous cell carcinoma in the floor of the mouth related to clinical evaluation. Eur J Oral Sci 94:347–356
doi: 10.1111/j.1600-0722.1986.tb01773.x
Sahni A, Rehani S, Kardam P et al (2019) Analysis of stromal mucin in oral epithelial dysplasia and oral squamous cell carcinoma-A histochemical study. J Oral Biol Craniofac Res 9:40–46
doi: 10.1016/j.jobcr.2018.07.004
Yu D-F, Jiang S-J, Pan Z-P et al (2016) Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett 11:1167–1172. https://doi.org/10.3892/ol.2015.3982
doi: 10.3892/ol.2015.3982
pubmed: 26893713
Ruan L, Wang L, Wang X et al (2018) SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget 9:2002–2016. https://doi.org/10.18632/oncotarget.23111
doi: 10.18632/oncotarget.23111
pubmed: 29416748
Huang F-T, Sun J, Zhang L et al (2019) Role of SIRT1 in hematologic malignancies. J Zhejiang Univ Sci B 20:391–398. https://doi.org/10.1631/jzus.B1900148
doi: 10.1631/jzus.B1900148
pubmed: 31090265
pmcid: 6568226
Chen I-C, Chiang W-F, Huang H-H et al (2014) Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol Cancer 13:1–19
doi: 10.1186/1476-4598-13-1
Kang Y-Y, Sun F-L, Zhang Y, Wang Z (2018) SIRT1 acts as a potential tumor suppressor in oral squamous cell carcinoma. J Chin Med Assoc 81:416–422
doi: 10.1016/j.jcma.2017.09.004
Noguchi A, Li X, Kubota A et al (2013) SIRT1 expression is associated with good prognosis for head and neck squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol 115:385–392
doi: 10.1016/j.oooo.2012.12.013
Seyedmajidi M, Nafarzadeh S, Rayani A et al (2019) Immunohistochemical expression of SIRT1 in oral squamous cell carcinoma and its relationship with clinical-pathological factors. J Contemp Med Sci. https://doi.org/10.22317/jcms.10201903
doi: 10.22317/jcms.10201903
Li Z-X, Zhu Q-N, Zhang H-B et al (2018) MALAT1: a potential biomarker in cancer. Cancer Manage Res 10:6757–6768. https://doi.org/10.2147/CMAR.S169406
doi: 10.2147/CMAR.S169406
Liang J, Liang L, Ouyang K et al (2017) MALAT 1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway. J Oral Pathol Med 46:98–105
doi: 10.1111/jop.12466
Chang S, Hu W (2018) Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J Cell Physiol 233:3384–3396
doi: 10.1002/jcp.26185
Mohamed MA, Kamal KA, Nasr GA, AlQarni AA (2018) An analysis of Bcl-2 and Bax markers expression in polymorphous low-grade adenocarcinoma and epithelial–myoepithelial carcinoma of salivary gland. Tanta Dent J 15:99
Vucicevic K, Jakovljevic V, Colovic N et al (2016) Association of Bax expression and Bcl2/Bax ratio with clinical and molecular prognostic markers in chronic lymphocytic leukemia. J Med Biochem 35:150–157. https://doi.org/10.1515/jomb-2015-0017
doi: 10.1515/jomb-2015-0017
pubmed: 28356875
pmcid: 5346792
Wang P-G, Li Y-T, Pan Y et al (2019) Lower expression of Bax predicts poor clinical outcome in patients with glioma after curative resection and radiotherapy/chemotherapy. J Neurooncol 141:71–81
doi: 10.1007/s11060-018-03031-9
Haque S, Morris JC (2017) Transforming growth factor-β: a therapeutic target for cancer. Hum Vaccin Immunother 13:1741–1750. https://doi.org/10.1080/21645515.2017.1327107
doi: 10.1080/21645515.2017.1327107
pubmed: 28575585
pmcid: 5557219
Han Z, Kang D, Joo Y et al (2018) TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp Mol Med 50:1–19
doi: 10.1038/s12276-018-0189-8
Hao Y, Baker D, Ten Dijke P (2019) TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20:2767
doi: 10.3390/ijms20112767
Zhang Y, Alexander PB, Wang X-F (2017) TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 9:a022145
doi: 10.1101/cshperspect.a022145
Wu F, Weigel KJ, Zhou H, Wang X-J (2018) Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 50:98–105
doi: 10.1093/abbs/gmx127
Liu L-P, Zheng Y-W (2019) Predicting differentiation potential of human pluripotent stem cells: possibilities and challenges. World J Stem Cells 11:375–382. https://doi.org/10.4252/wjsc.v11.i7.375
doi: 10.4252/wjsc.v11.i7.375
pubmed: 31396366
pmcid: 6682503
Ono H, Obana A, Usami Y et al (2015) Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed Res Int 2015:1–11