Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 09 2021
17 09 2021
Historique:
received:
30
05
2021
accepted:
10
08
2021
entrez:
18
9
2021
pubmed:
19
9
2021
medline:
16
11
2021
Statut:
epublish
Résumé
Parieto-occipital alpha rhythms (8-12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.
Identifiants
pubmed: 34535692
doi: 10.1038/s41598-021-96849-9
pii: 10.1038/s41598-021-96849-9
pmc: PMC8448857
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18562Subventions
Organisme : NEI NIH HHS
ID : R21 EY026185
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY019693
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Buzsáki, G. Rhythms of the Brain (Oxford University Press, 2006).
doi: 10.1093/acprof:oso/9780195301069.001.0001
VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).
pubmed: 27567317
doi: 10.1016/j.tics.2016.07.006
Dugué, L. & VanRullen, R. Transcranial magnetic stimulation reveals intrinsic perceptual and attentional rhythms. Front. Neurosci. 11, 154 (2017).
pubmed: 28396622
pmcid: 5366344
doi: 10.3389/fnins.2017.00154
Ergenoglu, T. et al. Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn. Brain Res. 20, 376–383 (2004).
doi: 10.1016/j.cogbrainres.2004.03.009
Hanslmayr, S. et al. Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci. Lett. 375, 64–68 (2005).
pubmed: 15664124
doi: 10.1016/j.neulet.2004.10.092
Hanslmayr, S. et al. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37, 1465–1473 (2007).
pubmed: 17706433
doi: 10.1016/j.neuroimage.2007.07.011
Rahn, E. & Başar, E. Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. Int. J. Neurosci. 72, 123–136 (1993).
pubmed: 8225796
doi: 10.3109/00207459308991629
Romei, V. et al. Spontaneous fluctuations in posterior α-band EEG activity reflect variability in excitability of human visual areas. Cereb. Cortex 18, 2010–2018 (2008).
pubmed: 18093905
doi: 10.1093/cercor/bhm229
Romei, V., Rihs, T., Brodbeck, V. & Thut, G. Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport 19, 203–208 (2008).
pubmed: 18185109
doi: 10.1097/WNR.0b013e3282f454c4
Rahn, E. & Başar, E. Prestimulus EEG-activity strongly influences the auditory evoked vertex response A new method for selective averaging. Int. J. Neurosci. 69, 207–220 (1993).
pubmed: 8083007
doi: 10.3109/00207459309003331
Ploner, M., Gross, J., Timmermann, L., Pollok, B. & Schnitzler, A. Oscillatory activity reflects the excitability of the human somatosensory system. Neuroimage 32, 1231–1236 (2006).
pubmed: 16854599
doi: 10.1016/j.neuroimage.2006.06.004
Dugué, L., Marque, P. & VanRullen, R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).
pubmed: 21849549
pmcid: 6623205
doi: 10.1523/JNEUROSCI.1161-11.2011
Osipova, D., Hermes, D. & Jensen, O. Gamma power is phase-locked to posterior alpha activity. PLoS ONE 3, e3990 (2008).
pubmed: 19098986
pmcid: 2602598
doi: 10.1371/journal.pone.0003990
Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A. & Maier, A. Ongoing alpha activity in V1 regulates visually driven spiking responses. Cereb. Cortex 27, 1113–1124 (2017).
pubmed: 26656725
doi: 10.1093/cercor/bhv304
Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).
pubmed: 26777277
pmcid: 4871751
doi: 10.1016/j.neuron.2015.12.018
van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. USA 111, 14332–14341 (2014).
pubmed: 25205811
pmcid: 4210002
doi: 10.1073/pnas.1402773111
Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity Gating by inhibition. Front. Hum. Neurosci. 4, 186 (2010).
pubmed: 21119777
pmcid: 2990626
doi: 10.3389/fnhum.2010.00186
Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88 (2007).
pubmed: 16887192
doi: 10.1016/j.brainresrev.2006.06.003
Palva, S. & Palva, J. M. New vistas for α-frequency band oscillations. Trends Neurosci. 30, 150–158 (2007).
pubmed: 17307258
doi: 10.1016/j.tins.2007.02.001
Kizuk, S. A. D. & Mathewson, K. E. Power and phase of alpha oscillations reveal an interaction between spatial and temporal visual attention. J. Cogn. Neurosci. 29, 480–494 (2017).
pubmed: 28129063
doi: 10.1162/jocn_a_01058
Rohenkohl, G. & Nobre, A. C. Alpha oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 31, 14076–14084 (2011).
pubmed: 21976492
pmcid: 4235253
doi: 10.1523/JNEUROSCI.3387-11.2011
Gould, I. C., Rushworth, M. F. & Nobre, A. C. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J. Neurophysiol. 105, 1318–1326 (2011).
pubmed: 21228304
pmcid: 3074422
doi: 10.1152/jn.00653.2010
Ikkai, A., Dandekar, S. & Curtis, C. E. Lateralization in alpha-band oscillations predicts the locus and spatial distribution of attention. PLoS ONE 11, e0154796 (2016).
pubmed: 27144717
pmcid: 4856317
doi: 10.1371/journal.pone.0154796
Kelly, S. P., Lalor, E. C., Reilly, R. B. & Foxe, J. J. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J. Neurophysiol. 95, 3844–3851 (2006).
pubmed: 16571739
doi: 10.1152/jn.01234.2005
Rihs, T. A., Michel, C. M. & Thut, G. Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. Eur. J. Neurosci. 25, 603–610 (2007).
pubmed: 17284203
doi: 10.1111/j.1460-9568.2007.05278.x
Sauseng, P. et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur. J. Neurosci. 22, 2917–2926 (2005).
pubmed: 16324126
doi: 10.1111/j.1460-9568.2005.04482.x
Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502 (2006).
pubmed: 16971533
pmcid: 6674607
doi: 10.1523/JNEUROSCI.0875-06.2006
Worden, M. S., Foxe, J. J., Wang, N. & Simpson, G. V. Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. J. Neurosci. 20, RC63 (2000).
pubmed: 10704517
pmcid: 6772495
doi: 10.1523/JNEUROSCI.20-06-j0002.2000
Yamagishi, N., Goda, N., Callan, D. E., Anderson, S. J. & Kawato, M. Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. Cogn. Brain Res. 25, 799–809 (2005).
doi: 10.1016/j.cogbrainres.2005.09.006
Yamagishi, N. et al. Attentional modulation of oscillatory activity in human visual cortex. Neuroimage 20, 98–113 (2003).
pubmed: 14527573
doi: 10.1016/S1053-8119(03)00341-0
Capotosto, P., Babiloni, C., Romani, G. L. & Corbetta, M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J. Neurosci. 29, 5863–5872 (2009).
pubmed: 19420253
pmcid: 2692025
doi: 10.1523/JNEUROSCI.0539-09.2009
Capotosto, P., Babiloni, C., Romani, G. L. & Corbetta, M. Differential contribution of right and left parietal cortex to the control of spatial attention A simultaneous EEG-rTMS study. Cereb. Cortex 22, 446–454 (2012).
pubmed: 21666126
doi: 10.1093/cercor/bhr127
Marshall, T. R., O’Shea, J., Jensen, O. & Bergmann, T. O. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. J. Neurosci. 35, 1638–1647 (2015).
pubmed: 25632139
pmcid: 4308606
doi: 10.1523/JNEUROSCI.3116-14.2015
Popov, T., Kastner, S. & Jensen, O. FEF-controlled alpha delay activity precedes stimulus-induced gamma-band activity in visual cortex. J. Neurosci. 37, 4117–4127 (2017).
pubmed: 28314817
pmcid: 5391684
doi: 10.1523/JNEUROSCI.3015-16.2017
Thut, G. et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions A position paper. Clin. Neurophysiol. 128, 843–857 (2017).
pubmed: 28233641
pmcid: 5385293
doi: 10.1016/j.clinph.2017.01.003
Lakatos, P., Gross, J. & Thut, G. A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29, R890–R905 (2019).
pubmed: 31550478
pmcid: 6769420
doi: 10.1016/j.cub.2019.07.075
Fröhlich, F. Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog. Brain Res. 222, 41–73 (2015).
pubmed: 26541376
doi: 10.1016/bs.pbr.2015.07.025
Romei, V., Gross, J. & Thut, G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation Correlation or causation?. J. Neurosci. 30, 8692–8697 (2010).
pubmed: 20573914
pmcid: 6634639
doi: 10.1523/JNEUROSCI.0160-10.2010
Romei, V., Thut, G., Mok, R. M., Schyns, P. G. & Driver, J. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention. Eur. J. Neurosci. 35, 968–974 (2012).
pubmed: 22394014
doi: 10.1111/j.1460-9568.2012.08020.x
Chanes, L., Quentin, R., Tallon-Baudry, C. & Valero-Cabré, A. Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J. Neurosci. 33, 5000–5005 (2013).
pubmed: 23486970
pmcid: 6618994
doi: 10.1523/JNEUROSCI.4401-12.2013
Quentin, R., Chanes, L., Vernet, M. & Valero-Cabré, A. Fronto-parietal anatomical connections influence the modulation of conscious visual perception by high-beta frontal oscillatory activity. Cereb. Cortex 25, 2095–2101 (2015).
pubmed: 24554730
doi: 10.1093/cercor/bhu014
Quentin, R. et al. Visual contrast sensitivity improvement by right frontal high-beta activity is mediated by contrast gain mechanisms and influenced by fronto-parietal white matter microstructure. Cereb. Cortex 26, 2381–2390 (2016).
pubmed: 25899709
doi: 10.1093/cercor/bhv060
Vernet, M., Stengel, C., Quentin, R., Amengual, J. L. & Valero-Cabré, A. Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness. Sci. Rep. 9, 14510 (2019).
pubmed: 31601822
pmcid: 6787242
doi: 10.1038/s41598-019-49673-1
Stengel, C., Vernet, M., Amengual, J. L. & Valero-Cabré, A. Causal modulation of right hemisphere fronto-parietal phase synchrony with transcranial magnetic stimulation during a conscious visual detection task. Sci. Rep. 11, 3807 (2021).
pubmed: 33589681
pmcid: 7884390
doi: 10.1038/s41598-020-79812-y
Ruzzoli, M. & Soto-Faraco, S. Alpha stimulation of the human parietal cortex attunes tactile perception to external space. Curr. Biol. 24, 329–332 (2014).
pubmed: 24440394
doi: 10.1016/j.cub.2013.12.029
Romei, V. et al. Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. Neuroimage 126, 120–130 (2016).
pubmed: 26584867
doi: 10.1016/j.neuroimage.2015.11.020
Hanslmayr, S., Matuschek, J. & Fellner, M.-C. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Curr. Biol. 24, 904–909 (2014).
pubmed: 24684933
doi: 10.1016/j.cub.2014.03.007
Jaegle, A. & Ro, T. Direct control of visual perception with phase-specific modulation of posterior parietal cortex. J. Cogn. Neurosci. 26, 422–432 (2014).
pubmed: 24116843
doi: 10.1162/jocn_a_00494
Calderone, D. J., Lakatos, P., Butler, P. D. & Castellanos, F. X. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn. Sci. 18, 300–309 (2014).
pubmed: 24630166
pmcid: 4037370
doi: 10.1016/j.tics.2014.02.005
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).
pubmed: 18388295
doi: 10.1126/science.1154735
Fries, P. Rhythms for cognition communication through coherence. Neuron 88, 220–235 (2015).
pubmed: 26447583
pmcid: 4605134
doi: 10.1016/j.neuron.2015.09.034
Chanes, L., Chica, A. B., Quentin, R. & Valero-Cabré, A. Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans. PLoS ONE 7, e36232 (2012).
pubmed: 22615759
pmcid: 3352916
doi: 10.1371/journal.pone.0036232
Beck, D. M. & Kastner, S. Neural systems for spatial attention in the human brain: Evidence from neuroimaging in the framework of biased competition. In Nobre, A. C. & Kastner, S. (Ed.) The Oxford Handbook of Attention (Oxford University Press, 2014).
Chica, A. B., Bartolomeo, P. & Lupiáñez, J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav. Brain Res. 237, 107–123 (2013).
pubmed: 23000534
doi: 10.1016/j.bbr.2012.09.027
Dugué, L., Merriam, E. P., Heeger, D. J. & Carrasco, M. Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci. Rep. 10, 21274 (2020).
pubmed: 33277552
pmcid: 7718281
doi: 10.1038/s41598-020-78172-x
Fernández, A. & Carrasco, M. Extinguishing exogenous attention via transcranial magnetic stimulation. Curr. Biol. 30, 1–7 (2020).
doi: 10.1016/j.cub.2020.07.068
Thut, G. et al. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21, 1176–1185 (2011).
pubmed: 21723129
pmcid: 3176892
doi: 10.1016/j.cub.2011.05.049
Klimesch, W., Sauseng, P. & Gerloff, C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur. J. Neurosci. 17, 1129–1133 (2003).
pubmed: 12653991
doi: 10.1046/j.1460-9568.2003.02517.x
Grandy, T. H. et al. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology 50, 570–582 (2013).
pubmed: 23551082
doi: 10.1111/psyp.12043
Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J. & Nobre, A. C. Inter- and intra-individual variability in alpha peak frequency. Neuroimage 92, 46–55 (2014).
pubmed: 24508648
doi: 10.1016/j.neuroimage.2014.01.049
Gray, M. J. & Emmanouil, T. A. Individual alpha frequency increases during a task but is unchanged by alpha-band flicker. Psychophysiology 57, e13480 (2020).
pubmed: 31573080
doi: 10.1111/psyp.13480
Wutz, A., Melcher, D. & Samaha, J. Frequency modulation of neural oscillations according to visual task demands. Proc. Natl. Acad. Sci. USA 115, 1346–1351 (2018).
pubmed: 29358390
pmcid: 5819398
doi: 10.1073/pnas.1713318115
Bollimunta, A., Mo, J., Schroeder, C. E. & Ding, M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J. Neurosci. 31, 4935–4943 (2011).
pubmed: 21451032
pmcid: 3505610
doi: 10.1523/JNEUROSCI.5580-10.2011
Bollimunta, A., Chen, Y., Schroeder, C. E. & Ding, M. Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28, 9976–9988 (2008).
pubmed: 18829955
pmcid: 2692971
doi: 10.1523/JNEUROSCI.2699-08.2008
Tallon-Baudry, C. & Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3, 151–162 (1999).
pubmed: 10322469
doi: 10.1016/S1364-6613(99)01299-1
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. & of TMS Consensus Group, T. S. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).
pubmed: 19833552
pmcid: 3260536
doi: 10.1016/j.clinph.2009.08.016
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
pubmed: 9176952
doi: 10.1163/156856897X00357
Pelli, D. G. The VideoToolbox software for visual psychophysics transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).
pubmed: 9176953
doi: 10.1163/156856897X00366
Jasper, H. H. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10, 370–375 (1958).
doi: 10.1016/0013-4694(58)90053-1
Lin, Y.-J. MarkStim: A TMS triggering/EEG event registering device (2013). https://github.com/mentist/markstim
Macmillan, N. A. & Creelman, C. D. Detection Theory A User’s Guide (Lawrence Erlbaum Associates, Inc., 2004).
doi: 10.4324/9781410611147
Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (John Wiley & Sons, Inc., 1966).
Cousineau, D. Confidence intervals in within-subject designs A simpler solution to Loftus and Masson’s method. Tutor. Quant. Methods Psychol. 1, 42–45 (2005).
doi: 10.20982/tqmp.01.1.p042
Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008).
pubmed: 17977024
doi: 10.1016/j.neuroimage.2007.09.034
Wandell, B. A. & Winawer, J. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015).
pubmed: 25850730
pmcid: 4484758
doi: 10.1016/j.tics.2015.03.009
Brett, M. et al. NiBabel: Access a cacophony of neuro-imaging file formats (2007). https://github.com/nipy/nibabel
Dugué, L., Roberts, M. & Carrasco, M. Attention reorients periodically. Curr. Biol. 26, 1595–1601 (2016).
pubmed: 27265395
pmcid: 4935543
doi: 10.1016/j.cub.2016.04.046
Schaeffner, L. F. & Welchman, A. E. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation. Exp. Brain Res. 235, 205–217 (2017).
pubmed: 27683006
doi: 10.1007/s00221-016-4784-4
Dugué, L., Marque, P. & VanRullen, R. Transcranial magnetic stimulation reveals attentional feedback to area V1 during serial visual search. PLoS ONE 6, e19712 (2011).
pubmed: 21611188
pmcid: 3096634
doi: 10.1371/journal.pone.0019712
Dugué, L., Marque, P. & VanRullen, R. Theta oscillations modulate attentional search performance periodically. J. Cogn. Neurosci. 27, 945–958 (2015).
pubmed: 25390199
doi: 10.1162/jocn_a_00755
Dugué, L., Beck, A.-A., Marque, P. & VanRullen, R. Contribution of FEF to attentional periodicity during visual search A TMS study. eNeuro 6, ENEURO.0357-18.2019 (2019).
pubmed: 31175148
pmcid: 6591533
doi: 10.1523/ENEURO.0357-18.2019
Salminen-Vaparanta, N. et al. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2. Cereb. Cortex https://doi.org/10.1093/cercor/bht131 (2013).
doi: 10.1093/cercor/bht131
pubmed: 23696280
Salminen-Vaparanta, N., Noreika, V., Revonsuo, A., Koivisto, M. & Vanni, S. Is selective primary visual cortex stimulation achievable with TMS?. Hum. Brain Mapp. 33, 652–665 (2012).
pubmed: 21416561
doi: 10.1002/hbm.21237
Silvanto, J., Muggleton, N., Lavie, N. & Walsh, V. The perceptual and functional consequences of parietal top-down modulation on the visual cortex. Cereb. Cortex 19, 327–330 (2009).
pubmed: 18515296
doi: 10.1093/cercor/bhn091
Kastner, S., Demmer, I. & Ziemann, U. Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp. Brain Res. 118, 19–26 (1998).
pubmed: 9547074
doi: 10.1007/s002210050251
Cowey, A. & Walsh, V. Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11, 3269–3273 (2000).
pubmed: 11043562
doi: 10.1097/00001756-200009280-00044
Veniero, D. et al. Top-down control of visual cortex by the frontal eye fields through oscillatory realignment. Nat. Commun. 12, 1757 (2021).
pubmed: 33741947
pmcid: 7979788
doi: 10.1038/s41467-021-21979-7
Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).
pubmed: 21253357
doi: 10.1155/2011/156869
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).
pubmed: 21584256
pmcid: 3090754
doi: 10.1155/2011/879716
Welch, P. D. The use of fast Fourier transform for the estimation of power spectra A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 15, 70–73 (1967).
doi: 10.1109/TAU.1967.1161901
Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).
pubmed: 10619414
pmcid: 6873296
doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).
pubmed: 17517438
doi: 10.1016/j.jneumeth.2007.03.024
Helfrich, R. F. et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24, 333–339 (2014).
pubmed: 24461998
doi: 10.1016/j.cub.2013.12.041
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization A Universal Concept in Nonlinear Sciences 52 (Cambridge University Press, 2001).
doi: 10.1017/CBO9780511755743
Herrmann, C. S., Murray, M. M., Ionta, S., Hutt, A. & Lefebvre, J. Shaping intrinsic neural oscillations with periodic stimulation. J. Neurosci. 36, 5328–5337 (2016).
pubmed: 27170129
pmcid: 6601804
doi: 10.1523/JNEUROSCI.0236-16.2016
Notbohm, A., Kurths, J. & Herrmann, C. S. Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front. Hum. Neurosci. 10, 10 (2016).
pubmed: 26869898
pmcid: 4737907
doi: 10.3389/fnhum.2016.00010
de Graaf, T. A. et al. Alpha-band rhythms in visual task performance Phase-locking by rhythmic sensory stimulation. PLoS ONE 8, e60035 (2013).
pubmed: 23555873
pmcid: 3612058
doi: 10.1371/journal.pone.0060035
Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M. & Lleras, A. Rescuing stimuli from invisibility inducing a momentary release from visual masking with pre-target entrainment. Cognition 115, 186–191 (2010).
pubmed: 20035933
doi: 10.1016/j.cognition.2009.11.010
Iemi, L., Chaumon, M., Crouzet, S. M. & Busch, N. A. Spontaneous neural oscillations bias perception by modulating baseline excitability. J. Neurosci. 37, 807–819 (2017).
pubmed: 28123017
pmcid: 6597018
doi: 10.1523/JNEUROSCI.1432-16.2016
Limbach, K. & Corballis, P. M. Prestimulus alpha power influences response criterion in a detection task. Psychophysiology 53, 1154–1164 (2016).
pubmed: 27144476
doi: 10.1111/psyp.12666
Sherman, M. T., Kanai, R., Seth, A. K. & VanRullen, R. Rhythmic influence of top-down perceptual priors in the phase of prestimulus occipital alpha oscillations. J. Cogn. Neurosci. 28, 1318–1330 (2016).
pubmed: 27082046
doi: 10.1162/jocn_a_00973
Samaha, J., Iemi, L. & Postle, B. R. Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Conscious. Cogn. 54, 47–55 (2017).
pubmed: 28222937
pmcid: 5561529
doi: 10.1016/j.concog.2017.02.005
Landau, A. N. & Fries, P. Attention samples stimuli rhythmically. Curr. Biol. 22, 1000–1004 (2012).
pubmed: 22633805
doi: 10.1016/j.cub.2012.03.054
Zaehle, T., Rach, S. & Herrmann, C. S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 5, e13766 (2010).
pubmed: 21072168
pmcid: 2967471
doi: 10.1371/journal.pone.0013766
Haberbosch, L. et al. Rebound or entrainment? The influence of alternating current stimulation on individual alpha. Front. Hum. Neurosci. 13, 43 (2019).
pubmed: 30809139
pmcid: 6380175
doi: 10.3389/fnhum.2019.00043
Vossen, A., Gross, J. & Thut, G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimulat. 8, 499–508 (2015).
doi: 10.1016/j.brs.2014.12.004