Oxidative stress in retinal pigment epithelium impairs stem cells: a vicious cycle in age-related macular degeneration.
Age-related macular degeneration (AMD)
Inflammation
Oxidative stress
Retinal pigment epithelium
Senescence-associated secretory phenotype (SASP)
Stem cells
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
22
02
2021
accepted:
02
09
2021
pubmed:
19
9
2021
medline:
15
3
2022
entrez:
18
9
2021
Statut:
ppublish
Résumé
Aging, chronic oxidative stress, and inflammation are major pathogenic factors in the development and progression of age-related macular degeneration (AMD) with the loss of retinal pigment epithelium (RPE). The human RPE contains a subpopulation of progenitors (i.e., RPE stem cells-RPESCs) whose role in the RPE homeostasis is under investigation. We evaluated the paracrine effects of mature RPE cells exposed to oxidative stress (H
Identifiants
pubmed: 34535868
doi: 10.1007/s11010-021-04258-3
pii: 10.1007/s11010-021-04258-3
doi:
Substances chimiques
IL6 protein, human
0
Interleukin-6
0
Hydrogen Peroxide
BBX060AN9V
Superoxide Dismutase
EC 1.15.1.1
superoxide dismutase 2
EC 1.15.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
67-77Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Al-Zamil WM, Yassin SA (2017) Recent developments in age-related macular degeneration: a review. Clin Interv Aging 12:1313–1330. https://doi.org/10.2147/cia.s143508
doi: 10.2147/cia.s143508
pubmed: 28860733
pmcid: 5573066
Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106-116. https://doi.org/10.1016/s2214-109x(13)70145-1
doi: 10.1016/s2214-109x(13)70145-1
pubmed: 25104651
pmcid: 25104651
Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv Ophthalmol 39:367–374. https://doi.org/10.1016/s0039-6257(05)80092-x
doi: 10.1016/s0039-6257(05)80092-x
pubmed: 7604360
Garcia-Layana A, Cabrera-Lopez F, Garcia-Arumi J et al (2017) Early and intermediate age-related macular degeneration: update and clinical review. Clin Interv Aging 12:1579–1587. https://doi.org/10.2147/cia.s142685
doi: 10.2147/cia.s142685
pubmed: 29042759
pmcid: 5633280
Wang S, Wang X, Cheng Y et al (2019) Autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses in AMD: from mechanisms to therapeutic potential. Oxid Med Cell Longev 2019:3632169. https://doi.org/10.1155/2019/3632169
doi: 10.1155/2019/3632169
pubmed: 31249643
pmcid: 6556250
Lee JS (2019) Cellular senescence, aging, and age-related disease: special issue of BMB reports in 2019. BMB Rep 52:1–2
doi: 10.5483/BMBRep.2019.52.1.002
Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90:299–309. https://doi.org/10.1111/j.1755-3768.2011.02179.x
doi: 10.1111/j.1755-3768.2011.02179.x
pubmed: 22112056
Gupta T, Saini N, Arora J, Sahni D (2017) Age-related changes in the chorioretinal junction: an immunohistochemical study. J Histochem Cytochem 65:567–577. https://doi.org/10.1369/0022155417726507
doi: 10.1369/0022155417726507
pubmed: 28813619
pmcid: 5624363
Blasiak J (2020) Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 77:789–805. https://doi.org/10.1007/s00018-019-03420-x
doi: 10.1007/s00018-019-03420-x
pubmed: 31897543
Glotin AL, Debacq-Chainiaux F, Brossas JY et al (2008) Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. Free Radic Biol Med 44:1348–1361. https://doi.org/10.1016/j.freeradbiomed.2007.12.023
doi: 10.1016/j.freeradbiomed.2007.12.023
pubmed: 18226607
Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo M (2016) Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biol 7:78–87. https://doi.org/10.1016/j.redox.2015.11.011
doi: 10.1016/j.redox.2015.11.011
pubmed: 26654980
Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50:926–935. https://doi.org/10.1167/iovs.07-1003
doi: 10.1167/iovs.07-1003
pubmed: 19171648
Mariotti C, Lazzarini R, Nicolai M et al (2015) Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell Tissue Res 362:21–3. https://doi.org/10.1007/s00441-015-2185-9
doi: 10.1007/s00441-015-2185-9
pubmed: 25916690
Salero E, Blenkinsop TA, Corneo B et al (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95. https://doi.org/10.1016/j.stem.2011.11.018
doi: 10.1016/j.stem.2011.11.018
pubmed: 22226358
Stanzel BV, Liu Z, Somboonthanakij S et al (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2:64–77. https://doi.org/10.1016/j.stemcr.2013.11.005
doi: 10.1016/j.stemcr.2013.11.005
Davis RJ, Alam NM, Zhao C et al (2017) The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep 9:42–49. https://doi.org/10.1016/j.stemcr.2017.05.016
doi: 10.1016/j.stemcr.2017.05.016
Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516. https://doi.org/10.1016/s0140-6736(14)61376-3
doi: 10.1016/s0140-6736(14)61376-3
pubmed: 25458728
Lazzarini R, Nicolai M, Pirani V, Mariotti C, Di Primio R (2018) Effects of senescent secretory phenotype acquisition on human retinal pigment epithelial stem cells. Aging (Albany NY) 10:3173–3184. https://doi.org/10.18632/aging.101624
doi: 10.18632/aging.101624
Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031
doi: 10.1093/nar/gkz1031
pubmed: 31691815
Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK (2013) Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 134:139–157. https://doi.org/10.1016/j.mad.2013.02.008
doi: 10.1016/j.mad.2013.02.008
pubmed: 23428415
pmcid: 3664937
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786. https://doi.org/10.1007/s00018-016-2147-8
doi: 10.1007/s00018-016-2147-8
pubmed: 26852158
pmcid: 4819943
Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (London) 15:384–389. https://doi.org/10.1038/eye.2001.141
doi: 10.1038/eye.2001.141
Harris J, Subhi Y, Sorensen TL (2017) Effect of aging and lifestyle on photoreceptors and retinal pigment epithelium: cross-sectional study in a healthy Danish population. Pathobiol Aging Age Relat Dis 7:1398016. https://doi.org/10.1080/20010001.2017.1398016
doi: 10.1080/20010001.2017.1398016
pubmed: 29152163
pmcid: 5678353
Sarna T, Burke JM, Korytowski W et al (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98. https://doi.org/10.1016/s0014-4835(02)00247-6
doi: 10.1016/s0014-4835(02)00247-6
pubmed: 12589778
Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89. https://doi.org/10.1016/j.preteyeres.2013.07.003
doi: 10.1016/j.preteyeres.2013.07.003
pubmed: 23933169
Stanton CM, Wright AF (2014) Inflammatory biomarkers for AMD. Adv Exp Med Biol 801:251–257. https://doi.org/10.1007/978-1-4614-3209-8_32
doi: 10.1007/978-1-4614-3209-8_32
pubmed: 24664705
Abokyi S, To CH, Lam TT, Tse DY (2020) Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models. Oxid Med Cell Longev. https://doi.org/10.1155/2020/7901270
doi: 10.1155/2020/7901270
pubmed: 32774677
pmcid: 7396061
Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR (2017) Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (London) 131:2865–2883. https://doi.org/10.1042/cs20171246
doi: 10.1042/cs20171246
Tower J (2012) Stress and stem cells. Wiley Interdiscip Rev Dev Biol. 1(6):789–802. https://doi.org/10.1002/wdev.56
doi: 10.1002/wdev.56
pubmed: 23799624
Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30(13):2520–2531. https://doi.org/10.1038/emboj.2011.162
doi: 10.1038/emboj.2011.162
pubmed: 21587205
pmcid: 3155297
Kültz D (2005) Molecular and evolutionary basis of the cellularstress response. Annu Rev Physiol 67:225–267. https://doi.org/10.1146/annurev.physiol.67.040403.103635
doi: 10.1146/annurev.physiol.67.040403.103635
pubmed: 15709958
Kook D, Wolf AH, Yu AL et al (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci 49:1712–1720. https://doi.org/10.1167/iovs.07-0477
doi: 10.1167/iovs.07-0477
pubmed: 18385095
Meyer P, Maity P, Burkovski A et al (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 13:e1005741. https://doi.org/10.1371/journal.pcbi.1005741
doi: 10.1371/journal.pcbi.1005741
pubmed: 29206223
pmcid: 5730191
Yang SR, Park JR, Kang KS (2015) Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev 2015:486263. https://doi.org/10.1155/2015/486263
doi: 10.1155/2015/486263
pubmed: 26273422
pmcid: 4529978
Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19:380–394. https://doi.org/10.1111/j.1600-0749.2006.00318.x
doi: 10.1111/j.1600-0749.2006.00318.x
pubmed: 16965267
pmcid: 1564434