Local fluid shear stress operates a molecular switch to drive fetal semilunar valve extension.

cardiovascular development mechanical regulation shear stress valve remodeling valvulogenesis

Journal

Developmental dynamics : an official publication of the American Association of Anatomists
ISSN: 1097-0177
Titre abrégé: Dev Dyn
Pays: United States
ID NLM: 9201927

Informations de publication

Date de publication:
03 2022
Historique:
revised: 01 09 2021
received: 14 04 2021
accepted: 04 09 2021
pubmed: 19 9 2021
medline: 8 4 2022
entrez: 18 9 2021
Statut: ppublish

Résumé

While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets. We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner. Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.

Sections du résumé

BACKGROUND
While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets.
RESULTS
We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner.
CONCLUSIONS
Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.

Identifiants

pubmed: 34535945
doi: 10.1002/dvdy.419
pmc: PMC8891031
mid: NIHMS1741147
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

481-497

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL128745
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL143247
Pays : United States
Organisme : NIH HHS
ID : S10 OD010605
Pays : United States

Informations de copyright

© 2021 American Association for Anatomy.

Références

Dev Biol. 2010 Nov 15;347(2):325-36
pubmed: 20816797
Development. 2013 Aug;140(15):3176-87
pubmed: 23824573
Int J Cardiol. 2021 Jan 15;323:220-228
pubmed: 32858136
J Cardiovasc Dev Dis. 2020 Sep 24;7(4):
pubmed: 32987700
Development. 2012 Dec 1;139(23):4449-60
pubmed: 23095891
Dev Cell. 2012 Feb 14;22(2):244-54
pubmed: 22340493
Front Cell Dev Biol. 2020 Sep 10;8:862
pubmed: 33015048
Eur Heart J. 2017 Mar 1;38(9):675-686
pubmed: 26491108
Circ Res. 2011 Jul 8;109(2):183-92
pubmed: 21597012
J Heart Valve Dis. 2008 Jan;17(1):62-73
pubmed: 18365571
Cell Mol Life Sci. 2013 Aug;70(16):2899-917
pubmed: 23161060
Circ Res. 2005 Apr 15;96(7):792-9
pubmed: 15761200
Tex Heart Inst J. 2011;38(6):705-6
pubmed: 22199442
Circ Res. 2009 Aug 28;105(5):408-21
pubmed: 19713546
Dev Cell. 2017 Nov 6;43(3):274-289.e5
pubmed: 29056552
PLoS One. 2013;8(4):e60244
pubmed: 23560082
J Cell Biol. 2004 Aug 2;166(3):359-67
pubmed: 15289495
Elife. 2018 Jun 29;7:
pubmed: 29956664
Prog Cardiovasc Dis. 2020 Jul - Aug;63(4):407-418
pubmed: 32592706
Development. 2016 Mar 15;143(6):1041-54
pubmed: 26893350
Biotechnol Bioeng. 2014 Nov;111(11):2326-37
pubmed: 24898772
Dev Biol. 2017 Oct 1;430(1):113-128
pubmed: 28790014
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1489-503
pubmed: 17569640
J Am Soc Echocardiogr. 1988 Nov-Dec;1(6):430-2
pubmed: 3272793
Dev Dyn. 2007 Sep;236(9):2594-614
pubmed: 17685488
J Biol Chem. 2014 Jul 4;289(27):18681-92
pubmed: 24831012
Nature. 2009 Oct 1;461(7264):614-20
pubmed: 19759537
Science. 2011 Apr 22;332(6028):458-61
pubmed: 21512031
J Clin Invest. 2010 Oct;120(10):3493-507
pubmed: 20890042
Biorheology. 1987;24(5):483-500
pubmed: 2965604
Biomech Model Mechanobiol. 2012 Jan;11(1-2):171-82
pubmed: 21416247
Circ Res. 2016 May 13;118(10):1480-97
pubmed: 27056911
Anat Embryol (Berl). 1980;160(1):83-91
pubmed: 7469038
J Clin Invest. 2011 Jan;121(1):422-30
pubmed: 21157040
Cell Rep. 2015 Oct 20;13(3):524-532
pubmed: 26456820
Dev Biol. 2008 Apr 15;316(2):200-13
pubmed: 18313657
Dis Model Mech. 2018 Oct 19;11(10):
pubmed: 30242109
Cardiovasc Res. 2013 Jul 15;99(2):232-41
pubmed: 23459103
Nat Genet. 2000 Feb;24(2):171-4
pubmed: 10655064
Arterioscler Thromb Vasc Biol. 2009 Feb;29(2):254-60
pubmed: 19023092
J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900
pubmed: 12084585
J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7
pubmed: 22078432
Mayo Clin Proc. 1999 Jan;74(1):14-26
pubmed: 9987528
Front Physiol. 2014 Aug 01;5:287
pubmed: 25136319
Dev Dyn. 2008 Nov;237(11):3200-9
pubmed: 18924235
J Mol Cell Cardiol. 2018 Oct;123:150-158
pubmed: 30201295
J Pediatr. 1989 Jan;114(1):79-86
pubmed: 2521249
Circ Res. 2007 Feb 2;100(2):220-8
pubmed: 17218603
Nat Commun. 2016 Nov 11;7:13247
pubmed: 27834400
Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1398-405
pubmed: 27199449
J Cardiovasc Dev Dis. 2020 Aug 17;7(3):
pubmed: 32824435
Nat Commun. 2017 Nov 20;8(1):1620
pubmed: 29158473
Ann Biomed Eng. 1999 Jul-Aug;27(4):572-9
pubmed: 10468241
J Mol Cell Cardiol. 2013 Jul;60:50-9
pubmed: 23531444
Integr Biol (Camb). 2018 Nov 12;10(11):719-726
pubmed: 30328449
Dev Cell. 2014 Aug 25;30(4):367-77
pubmed: 25158852
Sci Rep. 2016 Jun 07;6:27473
pubmed: 27273480
Development. 2005 Mar;132(5):1137-46
pubmed: 15689382
Anat Rec A Discov Mol Cell Evol Biol. 2004 Jul;279(1):636-51
pubmed: 15224405

Auteurs

Duc H Pham (DH)

The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
Department of Life Sciences, Santa Monica College, Santa Monica, California, USA.

Charles R Dai (CR)

The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Belle Y Lin (BY)

The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Jonathan T Butcher (JT)

The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH