Health impact assessment from exposure to trace metals present in atmospheric PM


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
19 Sep 2021
Historique:
received: 29 04 2021
accepted: 07 09 2021
entrez: 19 9 2021
pubmed: 20 9 2021
medline: 22 9 2021
Statut: epublish

Résumé

Many toxicological studies revealed the deleterious effects on human health induced by trace metals in ambient particulate matter (PM). This study reports the season-dependent water-soluble and total metal mass in PM

Identifiants

pubmed: 34537887
doi: 10.1007/s10661-021-09452-w
pii: 10.1007/s10661-021-09452-w
doi:

Substances chimiques

Air Pollutants 0
Metals, Heavy 0
Particulate Matter 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

663

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Aggarwal, A. L., Gargava, P., & Pathak, A. (2010). Conceptual Guidelines and Common Methodology for Air Quality Monitoring, Emission Inventory & Source Apportionment Studies for Indian Cities. Central Pollution Control Board. https://cpcb.nic.in/displaypdf.php
Arden Pope, C., & Dockery, D. W. (1999). Epidemiology of particle effects. Air Pollution and Health.  https://doi.org/10.1016/b978-012352335-8/50106-x
doi: 10.1016/b978-012352335-8/50106-x
Beeson, W. L., Abbey, D. E., & Knutsen, S. F. (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: Results from the AHSMOG study. Environmental Health Perspectives, 106(12), 813–822. https://doi.org/10.2307/3434125
doi: 10.2307/3434125
Bremner, S. A., Anderson, H. R., Atkinson, R. W., McMichael, A. J., Strachan, D. P., Bland, J. M., & Bower, J. S. (1999). Short term associations between outdoor air pollution and mortality in London 1992–4. Occupational and Environmental Medicine, 56(4), 237–244. https://doi.org/10.1136/oem.56.4.237
doi: 10.1136/oem.56.4.237
Bretón, J. G. C., Bretón, R. M. C., Guzman, A. A. E., Guarnaccia, C., Morales, S. M., Severino, R. del C. L., et al. (2019). Trace metal content and health risk assessment of PM10 in an urban environment of León, Mexico. Atmosphere, 10(10). https://doi.org/10.3390/atmos10100573
Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049
doi: 10.1289/ehp.1307049
Calderón-Garcidueñas, L., Franco-Lira, M., Henríquez-Roldán, C., Osnaya, N., González-Maciel, A., Reynoso-Robles, R., et al. (2010). Urban air pollution: Influences on olfactory function and pathology in exposed children and young adults. Experimental and Toxicologic Pathology, 62(1), 91–102. https://doi.org/10.1016/j.etp.2009.02.117
doi: 10.1016/j.etp.2009.02.117
Chandra Mouli, P., Venkata Mohan, S., Balaram, V., Praveen Kumar, M., & Jayarama Reddy, S. (2006). A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmospheric Environment, 40(1), 136–146. https://doi.org/10.1016/j.atmosenv.2005.09.028
doi: 10.1016/j.atmosenv.2005.09.028
Charrier, J. G., & Anastasio, C. (2012). On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmospheric Chemistry and Physics Discussions, 12(5), 11317–11350. https://doi.org/10.5194/acpd-12-11317-2012
doi: 10.5194/acpd-12-11317-2012
Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0103799
Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wang, X. (2015). Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmospheric Pollution Research, 6(5), 742–750. https://doi.org/10.5094/APR.2015.083
Demography. (2020). Ahmedabad District, Government of Gujarat | India, 2020. https://ahmedabad.nic.in/demography/
Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad region, Jharkhand. India. Atmospheric Pollution Research, 3(2), 238–246. https://doi.org/10.5094/APR.2012.026
doi: 10.5094/APR.2012.026
Fenton. (1894). Oxidation of tartaric acid in presence of iron.
Fomba, K. W., Van Pinxteren, D., Müller, K., Iinuma, Y., Lee, T., Collett, J. L., & Herrmann, H. (2015). Trace metal characterization of aerosol particles and cloud water during HCCT 2010. Atmospheric Chemistry and Physics, 15(15), 8751–8765. https://doi.org/10.5194/acp-15-8751-2015
doi: 10.5194/acp-15-8751-2015
Gaonkar, C. V., Kumar, A., Matta, V. M., & Kurian, S. (2020). Assessment of crustal element and trace metal concentrations in atmospheric particulate matter over a coastal city in the Eastern Arabian Sea. Journal of the Air and Waste Management Association, 70(1), 78–92. https://doi.org/10.1080/10962247.2019.1680458
doi: 10.1080/10962247.2019.1680458
Haber, F., Weiss, J., & A, P. R. S. L. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 147(861), 332–351. https://doi.org/10.1098/rspa.1934.0221
Idani, E., Geravandi, S., Akhzari, M., Goudarzi, G., Alavi, N., Yari, A. R., et al. (2020). Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated middle eastern city. Toxin Reviews, 39(3), 266–274. https://doi.org/10.1080/15569543.2018.1513034
doi: 10.1080/15569543.2018.1513034
Jaiswal, N. K., Ramteke, S., Patel, K. S., Saathoff, H., Nava, S., Lucarelli, F., et al. (2019). Winter particulate pollution over Raipur, India. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4), 05019001. https://doi.org/10.1061/(asce)hz.2153-5515.0000444
doi: 10.1061/(asce)hz.2153-5515.0000444
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, C., Brooks, N., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718), 67–71. https://doi.org/10.1126/science.1105959
doi: 10.1126/science.1105959
Kumar, P., Gurjar, B. R., Nagpure, A. S., & Harrison, R. M. (2011). Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts. Environmental Science and Technology, 45(13), 5514–5521. https://doi.org/10.1021/es2003183
doi: 10.1021/es2003183
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B. & Boden, T. A. (2018). Global Carbon Budget 2018 (pre-print). Earth System Science Data Discuss 1-54.
Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455–460. https://doi.org/10.1289/ehp.6000
doi: 10.1289/ehp.6000
Lim, Y. B., & Ziemann, P. J. (2005). Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environmental Science and Technology, 39(23), 9229–9236. https://doi.org/10.1021/jp058024l
doi: 10.1021/jp058024l
Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., et al. (2016). Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 113(39), 10797–10801. https://doi.org/10.1073/pnas.1605941113
doi: 10.1073/pnas.1605941113
Marlier, M. E., Jina, A. S., Kinney, P. L., & DeFries, R. S. (2016). Extreme air pollution in global megacities. Current Climate Change Reports, 2(1), 15–27. https://doi.org/10.1007/s40641-016-0032-z
doi: 10.1007/s40641-016-0032-z
McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2(2). https://doi.org/10.1180/minmag.1998.62a.2.182
Means, B. (1989). Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002). Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response.
MSME. (2011). Brief industrial profile of AHMEDABAD District, Government of India, Ministry of MSME, (079).
National Ambient Air Quality Standards (NAAQS). (2011). Monitoring & Analysis Guidelines. Central Pollution Control Board, India. Guidelines for the Measurement of Ambient Air Pollutants, 1. http://www.cpcb.nic.in
Ostro, B. D., Broadwin, R., & Lipsett, M. J. (2000). Coarse and fine particles and daily mortality in the Coachella Valley, California: A follow-up study. Journal of Exposure Analysis and Environmental Epidemiology, 10(5), 412–419. https://doi.org/10.1038/sj.jea.7500094
doi: 10.1038/sj.jea.7500094
Patel, A., Rastogi, N., Gandhi, U., & Khatri, N. (2020). Oxidative potential of atmospheric PM10 at five different sites of Ahmedabad, a big city in Western India. Environmental Pollution, 268, 115909. https://doi.org/10.1016/j.envpol.2020.115909
doi: 10.1016/j.envpol.2020.115909
Paulino, D. A. S., Oliveira, R. L., Loyola, J., Minho, A. S., Arbilla, G., Quiterio, S. L., & Escaleira, V. (2014). Trace metals in PM10 and PM2.5 samples collected in a highly industrialized chemical/petrochemical area and its urbanized surroundings. Bulletin of Environmental Contamination and Toxicology, 92(5), 590–595. https://doi.org/10.1007/s00128-014-1219-4
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9), 1132–1141. https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.287.9.1132
Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie - International Edition, 44(46), 7520–7540. https://doi.org/10.1002/anie.200501122
doi: 10.1002/anie.200501122
Qi, L., Chen, M., Ge, X., Zhang, Y., & Guo, B. (2016). Seasonal variations and sources of 17 aerosol metal elements in suburban Nanjing. China. Atmosphere, 7(12), 1–21. https://doi.org/10.3390/atmos7120153
doi: 10.3390/atmos7120153
Rai, P., Furger, M., El Haddad, I., Kumar, V., Wang, L., Singh, A., et al. (2020). Real-time measurement and source apportionment of elements in Delhi’s atmosphere. Science of the Total Environment, 742, 140332. https://doi.org/10.1016/j.scitotenv.2020.140332
doi: 10.1016/j.scitotenv.2020.140332
Rastogi, N., & Sarin, M. M. (2005). Chemical characteristics of individual rain events from a semi-arid region in India: Three-year study. Atmospheric Environment, 39(18), 3313–3323. https://doi.org/10.1016/j.atmosenv.2005.01.053
doi: 10.1016/j.atmosenv.2005.01.053
Rastogi, N., & Sarin, M. M. (2006). Chemistry of aerosols over a semi-arid region: Evidence for acid neutralization by mineral dust. Geophysical Research Letters, 33(23), 10–13. https://doi.org/10.1029/2006GL027708
doi: 10.1029/2006GL027708
Rastogi, N., & Sarin, M. M. (2009). Quantitative chemical composition and characteristics of aerosols over western India: One-year record of temporal variability. Atmospheric Environment, 43(22–23), 3481–3488. https://doi.org/10.1016/j.atmosenv.2009.04.030
doi: 10.1016/j.atmosenv.2009.04.030
Roy, R., Jan, R., Yadav, S., Vasave, M. H., & Gursumeeran Satsangi, P. (2016). Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune, India. Air Quality, Atmosphere and Health, 9(6), 669–680. https://doi.org/10.1007/s11869-015-0376-x
doi: 10.1007/s11869-015-0376-x
Schwartz, J., & Morris, R. (1995). Air pollution and hospital admissions for cardiovascular disease in detroit. Michigan. American Journal of Epidemiology, 142(1), 23–35. https://doi.org/10.1093/oxfordjournals.aje.a117541
doi: 10.1093/oxfordjournals.aje.a117541
Shi, T., Knaapen, A. M., Begerow, J., Birmili, W., Borm, P. J. A., & Schins, R. P. F. (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occupational and Environmental Medicine, 60(5), 315–321. https://doi.org/10.1136/oem.60.5.315
doi: 10.1136/oem.60.5.315
Srinivas, B., Sarin, M. M., & Kumar, A. (2012). Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochemistry, 110(1–3), 257–268. https://doi.org/10.1007/s10533-011-9680-1
doi: 10.1007/s10533-011-9680-1
Sudheer, A. K., & Rengarajan, R. (2012). Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol and Air Quality Research, 12(5), 923–933. https://doi.org/10.4209/aaqr.2011.12.0237
doi: 10.4209/aaqr.2011.12.0237
Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanography, 6(5–6), 411–442. https://doi.org/10.1080/01965581.1988.10749543
doi: 10.1080/01965581.1988.10749543
Suvarapu, L. N., & Baek, S. O. (2016). Determination of heavy metals in the ambient atmosphere: A review. Toxicology and Industrial Health, 33(1), 79–96. https://doi.org/10.1177/0748233716654827
doi: 10.1177/0748233716654827
United Nations. (2018). The world’s cities in 2018. The World’s Cities in 2018 - Data Booklet (ST/ESA/ SER.A/417), 34.
Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., et al. (2015). Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 15(19), 11291–11309. https://doi.org/10.5194/acp-15-11291-2015
doi: 10.5194/acp-15-11291-2015
Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., & Zhang, R. (2010). Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nature Geoscience, 3(4), 238–242. https://doi.org/10.1038/ngeo778
doi: 10.1038/ngeo778
WHO. (2016). WHO’s Urban Ambient Air Pollution database - Update 2016. https://www.who.int/

Auteurs

Utsav Gandhi (U)

Gujarat Environment Management Institute (GEMI), Forests and Environment Department, 3rd floor, Block No. 13, Dr. Jivraj Mehta Bhavan, Old Sachivalaya, Sector 10, Gujarat, 382010, Gandhinagar, India.

Nitasha Khatri (N)

Gujarat Environment Management Institute (GEMI), Forests and Environment Department, 3rd floor, Block No. 13, Dr. Jivraj Mehta Bhavan, Old Sachivalaya, Sector 10, Gujarat, 382010, Gandhinagar, India. nitashakhatri1983@gmail.com.

Viral Brahmbhatt (V)

Gujarat Environment Management Institute (GEMI), Forests and Environment Department, 3rd floor, Block No. 13, Dr. Jivraj Mehta Bhavan, Old Sachivalaya, Sector 10, Gujarat, 382010, Gandhinagar, India.

Ashutosh Kumar Jha (AK)

Gujarat Environment Management Institute (GEMI), Forests and Environment Department, 3rd floor, Block No. 13, Dr. Jivraj Mehta Bhavan, Old Sachivalaya, Sector 10, Gujarat, 382010, Gandhinagar, India.

Anil Patel (A)

Geosciences Division, Physical Research Laboratory, Ahmedabad, India.

Neeraj Rastogi (N)

Geosciences Division, Physical Research Laboratory, Ahmedabad, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH