Distinctive Regulation of Emotional Behaviors and Fear-Related Gene Expression Responses in Two Extended Amygdala Subnuclei With Similar Molecular Profiles.
anxiety
bed nucleus of the stria terminalis
central extended amygdala
central nucleus of the amygdala
fear
gene expression
Journal
Frontiers in molecular neuroscience
ISSN: 1662-5099
Titre abrégé: Front Mol Neurosci
Pays: Switzerland
ID NLM: 101477914
Informations de publication
Date de publication:
2021
2021
Historique:
received:
15
07
2021
accepted:
12
08
2021
entrez:
20
9
2021
pubmed:
21
9
2021
medline:
21
9
2021
Statut:
epublish
Résumé
The central nucleus of the amygdala (CeA) and the lateral division of the bed nucleus of the stria terminalis (BNST) are the two major nuclei of the central extended amygdala that plays essential roles in threat processing, responsible for emotional states such as fear and anxiety. While some studies suggested functional differences between these nuclei, others showed anatomical and neurochemical similarities. Despite their complex subnuclear organization, subnuclei-specific functional impact on behavior and their underlying molecular profiles remain obscure. We here constitutively inhibited neurotransmission of protein kinase C-δ-positive (PKCδ+) neurons-a major cell type of the lateral subdivision of the CeA (CeL) and the oval nucleus of the BNST (BNSTov)-and found striking subnuclei-specific effects on fear- and anxiety-related behaviors, respectively. To obtain molecular clues for this dissociation, we conducted RNA sequencing in subnuclei-targeted micropunch samples. The CeL and the BNSTov displayed similar gene expression profiles at the basal level; however, both displayed differential gene expression when animals were exposed to fear-related stimuli, with a more robust expression change in the CeL. These findings provide novel insights into the molecular makeup and differential engagement of distinct subnuclei of the extended amygdala, critical for regulation of threat processing.
Identifiants
pubmed: 34539345
doi: 10.3389/fnmol.2021.741895
pmc: PMC8446640
doi:
Types de publication
Journal Article
Langues
eng
Pagination
741895Informations de copyright
Copyright © 2021 Ueda, Hosokawa, Arikawa, Takahashi, Fujiwara, Kakita, Fukada, Koyama, Horigane, Itoi, Kakeyama, Matsunaga, Takeyama, Bito and Takemoto-Kimura.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Neurochem. 2019 Feb;148(4):447-461
pubmed: 30225984
Peptides. 1992 May-Jun;13(3):451-60
pubmed: 1381826
Neuroscience. 2004;128(1):7-14
pubmed: 15450349
Neurosci Lett. 2019 Feb 6;693:58-67
pubmed: 29195911
J Biol Chem. 2003 May 16;278(20):18597-605
pubmed: 12637513
Neuron. 2017 Mar 22;93(6):1464-1479.e5
pubmed: 28334609
J Comp Neurol. 1989 May 15;283(3):315-32
pubmed: 2568370
Neuropsychopharmacology. 2010 Jan;35(1):105-35
pubmed: 19693004
Nat Neurosci. 2019 Dec;22(12):2000-2012
pubmed: 31712775
Nat Neurosci. 2020 Apr;23(4):487-499
pubmed: 32042175
Sci Rep. 2017 Jun 28;7(1):4325
pubmed: 28659603
Neuroscience. 1988 Oct;27(1):1-39
pubmed: 3059226
Front Neuroendocrinol. 2003 Jul;24(3):151-80
pubmed: 14596810
Nat Protoc. 2014 Jan;9(1):171-81
pubmed: 24385147
Nat Methods. 2013 Sep;10(9):889-95
pubmed: 23852453
J Comp Neurol. 2001 Aug 6;436(4):430-55
pubmed: 11447588
Front Psychiatry. 2019 Jul 17;10:510
pubmed: 31379626
Neuroscience. 1989;30(2):377-83
pubmed: 2473417
Nat Rev Neurosci. 2015 Jun;16(6):317-31
pubmed: 25991441
Nature. 2017 Feb 2;542(7639):96-100
pubmed: 28117439
Nat Rev Neurosci. 2020 Dec;21(12):682-694
pubmed: 33046886
Nat Rev Neurosci. 2015 Dec;16(12):756-67
pubmed: 26585800
Nature. 2010 Nov 11;468(7321):277-82
pubmed: 21068837
Learn Mem. 2001 May-Jun;8(3):148-55
pubmed: 11390634
Mol Psychiatry. 2016 Apr;21(4):450-63
pubmed: 26878891
Clin Psychol Rev. 2011 Feb;31(1):122-37
pubmed: 20817337
Neuroscience. 1998 Jun;84(4):967-96
pubmed: 9578390
Neuron. 2017 Jan 4;93(1):164-178
pubmed: 28017470
Front Behav Neurosci. 2019 Jan 15;12:329
pubmed: 30697153
Neuropsychopharmacology. 2016 Jan;41(1):103-25
pubmed: 26096838
Learn Mem. 2016 Nov 15;23(12):703-709
pubmed: 27918275
Biol Psychiatry. 2015 Sep 1;78(5):336-43
pubmed: 25981173
Curr Opin Neurobiol. 2018 Apr;49:141-147
pubmed: 29522976
Neuroimage. 2018 Mar;168:392-402
pubmed: 28392491
J Neurosci. 2018 Jun 13;38(24):5567-5583
pubmed: 29844022
Neuropsychopharmacology. 2003 Jun;28(6):1031-44
pubmed: 12700679
eNeuro. 2018 Feb 6;5(1):
pubmed: 29445764
Brain Res Brain Res Rev. 2001 Dec;38(1-2):192-246
pubmed: 11750933
Exp Mol Med. 2018 Apr 9;50(4):1-16
pubmed: 29628509
Trends Neurosci. 2015 May;38(5):319-29
pubmed: 25851307
Endocrinology. 2014 Oct;155(10):4054-60
pubmed: 25057791
Nat Neurosci. 2013 Mar;16(3):332-9
pubmed: 23354330
J Neurosci. 2020 Oct 7;40(41):7949-7964
pubmed: 32958570
Nature. 2015 Jan 15;517(7534):284-92
pubmed: 25592533
Nat Commun. 2019 Jun 24;10(1):2769
pubmed: 31235690
Biol Psychiatry. 2021 May 1;89(9):847-856
pubmed: 33691931
Nat Neurosci. 2017 Dec;20(12):1680-1685
pubmed: 29184202
J Neurosci. 2017 Oct 4;37(40):9645-9656
pubmed: 28893930
Nature. 2010 Nov 11;468(7321):270-6
pubmed: 21068836
Trends Neurosci. 2018 May;41(5):280-293
pubmed: 29703377
J Psychiatr Res. 2012 Aug;46(8):1045-52
pubmed: 22575329
Brain Struct Funct. 2019 Apr;224(3):1067-1095
pubmed: 30610368
Sci Rep. 2020 Apr 27;10(1):7083
pubmed: 32341421
Neuroscience. 2016 May 3;321:108-120
pubmed: 26102004