A review of the clinical and engineering performance of dual-mobility cups for total hip arthroplasty.

Dislocation IPD corrosion dual mobility total hip arthroplasty wear

Journal

American journal of translational research
ISSN: 1943-8141
Titre abrégé: Am J Transl Res
Pays: United States
ID NLM: 101493030

Informations de publication

Date de publication:
2021
Historique:
received: 27 01 2021
accepted: 20 02 2021
entrez: 20 9 2021
pubmed: 21 9 2021
medline: 21 9 2021
Statut: epublish

Résumé

Charnley's low-friction principle of total hip arthroplasty (THA) is recognized as the gold standard. However, complications may arise, and one of the major reasons for revising THA is dislocation. Under such a background, Pr. Gilles Bousquet invented dual-mobility cups (DMC) in the 1970s to fight against hip instability. Despite the excellent clinical results of DMC compared with conventional implants, the clinical application of DMC is limited by concerns about the dual articulations, leading to rapid wear and the subsequent osteolysis and the wear on the retaining rim of the liner due to its contact with the femoral neck causing intraprosthetic dislocation (IPD). As a result, the original design of DMC has been upgraded by using highly cross-linked polyethylene, refining the geometry of the femoral neck, etc. After the improvement, the wear rate of the contemporary DMC liners has been largely reduced compared with the first generation DMC, and the IPD incidence rate has been controlled. However, with the increasing fretting corrosion damage found at the taper-trunnion interfaces in conventional implants, the contemporary DMC may face a similar problem. This is because the additional articulation and the larger head design of DMC gain the risk of articulation wear and taper-trunnion interface corrosion. Since there are still many potential DMC engineering issues that have not been extensively researched, future studies focusing on the wear and corrosion aspects are required. The purpose of this review article is to summarize both the clinical and engineering issues for DMC with possible directions for future research.

Identifiants

pubmed: 34540057
pmc: PMC8430055

Types de publication

Journal Article

Langues

eng

Pagination

9383-9394

Informations de copyright

AJTR Copyright © 2021.

Déclaration de conflit d'intérêts

None.

Références

Int Orthop. 2012 Mar;36(3):511-8
pubmed: 21698430
J Arthroplasty. 2018 Jul;33(7S):S280-S284
pubmed: 29602536
Arthroplast Today. 2020 Dec 22;6(4):998-1000
pubmed: 33385041
Proc Inst Mech Eng H. 2016 Jan;230(1):39-49
pubmed: 26586527
J Biomed Mater Res B Appl Biomater. 2020 Jan;108(1):156-166
pubmed: 30924612
Int Orthop. 2019 May;43(5):1097-1105
pubmed: 30027352
Arthroplast Today. 2017 Feb 05;3(3):197-202
pubmed: 28913407
Rev Chir Orthop Reparatrice Appar Mot. 2008 Dec;94(8):e23-7
pubmed: 19070710
Orthop Traumatol Surg Res. 2010 Feb;96(1):9-13
pubmed: 20170851
Int Orthop. 2018 Jan;42(1):41-47
pubmed: 28577036
Int Orthop. 2017 Mar;41(3):551-556
pubmed: 28070611
Clin Orthop Relat Res. 2008 Feb;466(2):389-95
pubmed: 18196422
J Arthroplasty. 2014 Sep;29(9):1849-53
pubmed: 24891003
J Arthroplasty. 2007 Jun;22(4 Suppl 1):86-90
pubmed: 17570285
Clin Orthop Relat Res. 2009 Feb;467(2):465-72
pubmed: 18780135
Acta Orthop Scand. 2004 Dec;75(6):701-7
pubmed: 15762259
Rev Chir Orthop Reparatrice Appar Mot. 2006 Jun;92(4):326-31
pubmed: 16948459
J Arthroplasty. 2020 Feb;35(2):597-602
pubmed: 31653465
Orthop Traumatol Surg Res. 2015 Dec;101(8):923-7
pubmed: 26542070
Skeletal Radiol. 2014 Jul;43(7):1013-6
pubmed: 24522771
Lancet. 2019 Feb 16;393(10172):647-654
pubmed: 30782340
J Arthroplasty. 2019 Sep;34(9):2037-2044
pubmed: 31178386
J Biomed Mater Res B Appl Biomater. 2019 May;107(4):1199-1209
pubmed: 30184323
J Orthop Traumatol. 2015 Mar;16(1):15-20
pubmed: 25245630
Int Orthop. 2017 Mar;41(3):543-550
pubmed: 28013332
Rev Chir Orthop Reparatrice Appar Mot. 2005 Dec;91(S8):76
pubmed: 16609604
Expert Rev Med Devices. 2018 Nov;15(11):835-845
pubmed: 30345834
J Arthroplasty. 2019 Jun;34(6):1273-1278
pubmed: 30853157
Bone Joint J. 2014 Nov;96-B(11 Supple A):23-6
pubmed: 25381403
Int Orthop. 2015 Nov;39(11):2097-101
pubmed: 26346372
J Arthroplasty. 2015 Apr;30(4):631-40
pubmed: 25443363
Proc Inst Mech Eng H. 2014 Apr 9;228(5):477-485
pubmed: 24718864
Surg Technol Int. 2017 Jul 25;30:251-258
pubmed: 28395391
Arthroplast Today. 2019 Jan 22;5(1):38-42
pubmed: 31020019
Orthop Traumatol Surg Res. 2011 Feb;97(1):8-13
pubmed: 21273156
J Arthroplasty. 2020 Feb;35(2):508-512
pubmed: 31662280
Int Orthop. 2009 Aug;33(4):927-32
pubmed: 18521598
Expert Rev Med Devices. 2012 Jan;9(1):23-31
pubmed: 22145838
J Arthroplasty. 2017 Mar;32(3):1033-1039
pubmed: 28341314
HSS J. 2012 Oct;8(3):251-6
pubmed: 23144637
Int Orthop. 2017 Mar;41(3):605-610
pubmed: 27888294
Arthritis Care Res (Hoboken). 2021 Oct;73(10):1511-1517
pubmed: 32558368
Clin Orthop Relat Res. 2010 Dec;468(12):3248-54
pubmed: 20532718
Clin Orthop Relat Res. 2012 Jul;470(7):1932-40
pubmed: 22161085
Int Orthop. 2016 May;40(5):901-6
pubmed: 26429197
Bone Joint J. 2018 Jan;100-B(1):11-19
pubmed: 29305445
Orthop Traumatol Surg Res. 2011 Dec;97(8):807-13
pubmed: 22119512
Orthop Traumatol Surg Res. 2015 Sep;101(5):577-81
pubmed: 26138633
J Arthroplasty. 2013 Jun;28(6):1041-6
pubmed: 23434106
Int Orthop. 2017 Mar;41(3):521-527
pubmed: 27878334
Acta Orthop. 2012 Dec;83(6):566-71
pubmed: 23116439
Orthop Traumatol Surg Res. 2014 Feb;100(1):85-91
pubmed: 24447655
Clin Orthop Relat Res. 2013 Mar;471(3):965-70
pubmed: 23054529
BMC Musculoskelet Disord. 2010 Aug 06;11:175
pubmed: 20691056
J Arthroplasty. 2014 Jun;29(6):1323-8
pubmed: 24444567
J Bone Joint Surg Am. 2009 Jan;91(1):128-33
pubmed: 19122087
Int Orthop. 1998;22(4):219-24
pubmed: 9795807
Orthopedics. 2014 Dec;37(12):e1124-8
pubmed: 25437088
Int Orthop. 2013 Dec;37(12):2345-50
pubmed: 24026216
J Bone Joint Surg Am. 2006 Feb;88(2):290-4
pubmed: 16452739
Clin Orthop Relat Res. 2017 Mar;475(3):686-695
pubmed: 27020434
Orthop Traumatol Surg Res. 2010 Feb;96(1):2-8
pubmed: 20170850
Int Orthop. 2017 Mar;41(3):529-533
pubmed: 27928599
Am J Orthop (Belle Mead NJ). 2017 May/Jun;46(3):E154-E159
pubmed: 28666047
EFORT Open Rev. 2019 Sep 3;4(9):541-547
pubmed: 31598332
Int Orthop. 2012 Dec;36(12):2411-8
pubmed: 23073926
Hip Int. 2021 Jan;31(1):97-102
pubmed: 31601128

Auteurs

Shu Yang (S)

School of Mechanical Engineering, Southwest Jiaotong University Chengdu 610031, China.
Beijing Chunlizhengda Medical Instruments Co., Ltd. Beijing 101100, China.

Fengbao Xie (F)

Beijing Chunlizhengda Medical Instruments Co., Ltd. Beijing 101100, China.

Wen Cui (W)

School of Mechanical Engineering, Southwest Jiaotong University Chengdu 610031, China.

Yali Zhang (Y)

School of Mechanical Engineering, Southwest Jiaotong University Chengdu 610031, China.

Zhongmin Jin (Z)

School of Mechanical Engineering, Southwest Jiaotong University Chengdu 610031, China.

Classifications MeSH