Lysine Methyltransferase Inhibitors Impair H4K20me2 and 53BP1 Foci in Response to DNA Damage in Sarcomas, a Synthetic Lethality Strategy.

53BP1 foci DNA repair H2AX foci chaetocin doxorubicin histone methylation ionizing radiation tazemetostat

Journal

Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250

Informations de publication

Date de publication:
2021
Historique:
received: 26 05 2021
accepted: 16 08 2021
entrez: 20 9 2021
pubmed: 21 9 2021
medline: 21 9 2021
Statut: epublish

Résumé

Chromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs). KMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis. Chaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death. KMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.

Sections du résumé

BACKGROUND BACKGROUND
Chromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs).
METHODS METHODS
KMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis.
RESULTS RESULTS
Chaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death.
CONCLUSION CONCLUSIONS
KMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.

Identifiants

pubmed: 34540832
doi: 10.3389/fcell.2021.715126
pmc: PMC8446283
doi:

Types de publication

Journal Article

Langues

eng

Pagination

715126

Informations de copyright

Copyright © 2021 Campillo-Marcos, Monte-Serrano, Navarro-Carrasco, García-González and Lazo.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

J Biol Chem. 2017 Jul 14;292(28):11951-11959
pubmed: 28546430
Cell Death Dis. 2019 Nov 26;10(12):894
pubmed: 31772153
J Am Chem Soc. 2010 Mar 31;132(12):4078-9
pubmed: 20210309
Cancer. 2020 Jun 1;126(11):2637-2647
pubmed: 32129883
N Engl J Med. 2020 Aug 13;383(7):650-663
pubmed: 32786190
Cancer Lett. 2021 Apr 10;503:117-128
pubmed: 33516791
Cell. 2007 Feb 23;128(4):693-705
pubmed: 17320507
Leukemia. 2012 Apr;26(4):662-74
pubmed: 21979880
Future Med Chem. 2016 Sep;8(13):1635-54
pubmed: 27548656
Cancer Chemother Pharmacol. 2017 Oct;80(4):861-867
pubmed: 28756516
Cell. 2012 Jul 6;150(1):12-27
pubmed: 22770212
Expert Opin Ther Pat. 2021 Feb;31(2):119-135
pubmed: 33103538
Nat Rev Cancer. 2008 Jul;8(7):512-22
pubmed: 18574463
Nat Struct Mol Biol. 2013 Mar;20(3):317-25
pubmed: 23377543
Curr Treat Options Oncol. 2017 Jun;18(6):37
pubmed: 28540598
Apoptosis. 2002 Aug;7(4):321-8
pubmed: 12101391
Oncol Lett. 2019 Aug;18(2):1915-1921
pubmed: 31423261
Lancet Oncol. 2020 Nov;21(11):1423-1432
pubmed: 33035459
J Hematol Oncol. 2020 Apr 7;13(1):33
pubmed: 32264965
Cancer Cell. 2020 Feb 10;37(2):157-167.e6
pubmed: 32004442
Nature. 2000 Feb 24;403(6772):859-66
pubmed: 10706276
Mol Cell. 2016 May 5;62(3):409-421
pubmed: 27153538
DNA Repair (Amst). 2015 Dec;36:8-12
pubmed: 26391293
Nat Rev Mol Cell Biol. 2020 Dec;21(12):765-781
pubmed: 33077885
Biochim Biophys Acta. 2016 Apr;1863(4):760-9
pubmed: 26869104
Nucleic Acids Res. 2012 May;40(9):3898-912
pubmed: 22234877
Cell Mol Life Sci. 2018 Jul;75(14):2591-2611
pubmed: 29340707
Nature. 2013 Jul 4;499(7456):50-4
pubmed: 23760478
Eur J Biochem. 2004 Jun;271(12):2335-49
pubmed: 15182349
J Biol Chem. 2012 Jul 6;287(28):23757-68
pubmed: 22621922
Biochemistry. 2016 Mar 22;55(11):1584-99
pubmed: 26745824
Cell. 2006 Dec 29;127(7):1361-73
pubmed: 17190600
Mol Cancer Ther. 2009 Aug;8(8):2243-54
pubmed: 19671736
Cold Spring Harb Perspect Biol. 2013 Sep 01;5(9):
pubmed: 24003213
Oncotarget. 2012 Mar;3(3):228-35
pubmed: 22410433
Nature. 2011 Feb 3;470(7332):124-8
pubmed: 21293379
Cell Death Dis. 2014 May 08;5:e1212
pubmed: 24810048
Curr Opin Cell Biol. 2011 Jun;23(3):277-83
pubmed: 21489773
Mol Cancer Res. 2016 Dec;14(12):1195-1203
pubmed: 27604276
Mol Biol Cell. 2019 Jun 1;30(12):1359-1368
pubmed: 31145670
Elife. 2019 Mar 25;8:
pubmed: 30910006
J Biol Chem. 2009 Jan 2;284(1):426-435
pubmed: 18986980
Clin Cancer Res. 2015 Sep 1;21(17):3829-35
pubmed: 26169965
Nature. 2016 Aug 4;536(7614):100-3
pubmed: 27462807
EMBO Rep. 2014 Nov;15(11):1163-74
pubmed: 25252681
Nature. 2019 Apr;568(7753):551-556
pubmed: 30971823
Mutat Res. 2017 Oct;803-805:51-55
pubmed: 28781144
PLoS One. 2017 Apr 18;12(4):e0175950
pubmed: 28419143
Cell Death Dis. 2019 Oct 24;10(11):809
pubmed: 31649256
Nature. 2009 Oct 22;461(7267):1071-8
pubmed: 19847258
Genes Dev. 2017 Nov 15;31(22):2204-2221
pubmed: 29284710
J Exp Clin Cancer Res. 2019 May 17;38(1):203
pubmed: 31101118
Lancet Oncol. 2018 May;19(5):649-659
pubmed: 29650362
Cancer Cell. 2021 Jan 11;39(1):38-53.e7
pubmed: 33217343
Chromosoma. 2012 Apr;121(2):131-51
pubmed: 22249206
J Clin Oncol. 2010 May 20;28(15):2512-9
pubmed: 20406929
BMC Cancer. 2019 Mar 4;19(1):198
pubmed: 30832617
Q Rev Biophys. 2013 Nov;46(4):349-73
pubmed: 23991894
J Clin Oncol. 2009 Apr 10;27(11):1893-8
pubmed: 19273704
Annu Rev Biochem. 2006;75:243-69
pubmed: 16756492
Mol Cancer Ther. 2013 Nov;12(11):2591-600
pubmed: 23966622
EMBO J. 2012 May 2;31(9):2169-81
pubmed: 22373577
Biomolecules. 2015 Oct 23;5(4):2877-902
pubmed: 26512707
Nat Chem Biol. 2005 Aug;1(3):143-5
pubmed: 16408017
Cancers (Basel). 2020 Oct 15;12(10):
pubmed: 33076429
Apoptosis. 2015 Nov;20(11):1499-507
pubmed: 26349783
iScience. 2019 Mar 29;13:488-497
pubmed: 30898619
Phys Chem Chem Phys. 2020 Mar 21;22(11):6136-6144
pubmed: 32124883
Mol Cell. 2006 Jan 20;21(2):187-200
pubmed: 16427009
N Engl J Med. 2017 Aug 10;377(6):523-533
pubmed: 28578601
Nat Cell Biol. 2006 Jan;8(1):91-9
pubmed: 16341205
J Cancer. 2019 Jun 9;10(16):3678-3690
pubmed: 31333785
Mol Cell. 2010 Oct 22;40(2):179-204
pubmed: 20965415
Clin Cancer Res. 2020 Apr 1;26(7):1690-1699
pubmed: 31900275
Nature. 2001 May 17;411(6835):366-74
pubmed: 11357144
DNA Repair (Amst). 2010 Dec 10;9(12):1219-28
pubmed: 21035408
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2146-51
pubmed: 23345425
Nat Commun. 2019 Jul 4;10(1):2954
pubmed: 31273204
Nat Rev Mol Cell Biol. 2014 Jan;15(1):7-18
pubmed: 24326623
J Mol Cell Biol. 2013 Jun;5(3):157-65
pubmed: 23329852
Cell. 2020 Apr 16;181(2):211
pubmed: 32302562
Oncotarget. 2014 Apr 15;5(7):1770-8
pubmed: 24731990
Mol Cancer Ther. 2017 Nov;16(11):2586-2597
pubmed: 28835384
Oncol Rep. 2017 Oct;38(4):2489-2497
pubmed: 28849240
J Cell Biol. 2011 Aug 8;194(3):367-75
pubmed: 21807880
Antioxid Redox Signal. 2009 May;11(5):1097-106
pubmed: 18999987
Biochem Cell Biol. 1997;75(4):337-49
pubmed: 9493956
Oncologist. 2016 Feb;21(2):172-7
pubmed: 26786262
J Mol Biol. 2015 Feb 13;427(3):626-36
pubmed: 24887097
J Clin Invest. 2019 Mar 1;129(3):1211-1228
pubmed: 30589644
Nat Rev Genet. 2001 Mar;2(3):196-206
pubmed: 11256071
Mol Cancer. 2017 Feb 1;16(1):29
pubmed: 28148257
Blood. 2007 Mar 15;109(6):2579-88
pubmed: 17090648
Nat Rev Mol Cell Biol. 2005 Oct;6(10):757-65
pubmed: 16167054
Epigenetics. 2015;10(5):373-83
pubmed: 25923214
Front Cell Dev Biol. 2021 Jun 14;9:683038
pubmed: 34195200
Genes Dev. 2020 Jan 1;34(1-2):7-23
pubmed: 31896689
Blood Cancer J. 2015 May 15;5:e313
pubmed: 25978433
Nat Protoc. 2007;2(6):1445-57
pubmed: 17545981
Nat Chem Biol. 2013 Mar;9(3):136-7
pubmed: 23416387
Cell. 2010 Apr 16;141(2):243-54
pubmed: 20362325
Adv Genet. 2010;70:27-56
pubmed: 20920744

Auteurs

Ignacio Campillo-Marcos (I)

Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain.

Eva Monte-Serrano (E)

Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.

Elena Navarro-Carrasco (E)

Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.

Raúl García-González (R)

Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.

Pedro A Lazo (PA)

Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.

Classifications MeSH