Ligand Binding Introduces Significant Allosteric Shifts in the Locations of Protein Fluctuations.
Gaussian network model
GroEL
allostery
elastic network model
ligand binding
structural fluctuations
thermodynamics of protein binding
Journal
Frontiers in molecular biosciences
ISSN: 2296-889X
Titre abrégé: Front Mol Biosci
Pays: Switzerland
ID NLM: 101653173
Informations de publication
Date de publication:
2021
2021
Historique:
received:
29
06
2021
accepted:
09
08
2021
entrez:
20
9
2021
pubmed:
21
9
2021
medline:
21
9
2021
Statut:
epublish
Résumé
Allostery is usually considered to be a mechanism for transmission of signals associated with physical or dynamic changes in some part of a protein. Here, we investigate the changes in fluctuations across the protein upon ligand binding based on the fluctuations computed with elastic network models. These results suggest that binding reduces the fluctuations at the binding site but increases fluctuations at remote sites, but not to fully compensating extents. If there were complete conservation of entropy, then only the enthalpies of binding would matter and not the entropies; however this does not appear to be the case. Experimental evidence also suggests that energies and entropies of binding can compensate but that the extent of compensation varies widely from case to case. Our results do however always show transmission of an allosteric signal to distant locations where the fluctuations are increased. These fluctuations could be used to compute entropies to improve evaluations of the thermodynamics of binding. We also show the allosteric relationship between peptide binding in the GroEL trans-ring that leads directly to the release of GroES from the GroEL-GroES cis-ring. This finding provides an example of how calculating these changes to protein dynamics induced by the binding of an allosteric ligand can regulate protein function and mechanism.
Identifiants
pubmed: 34540902
doi: 10.3389/fmolb.2021.733148
pii: 733148
pmc: PMC8440829
doi:
Types de publication
Journal Article
Langues
eng
Pagination
733148Informations de copyright
Copyright © 2021 Kumar and Jernigan.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12020-5
pubmed: 11035796
Structure. 2004 Mar;12(3):429-38
pubmed: 15016359
J Biol Chem. 2015 Jun 12;290(24):15042-51
pubmed: 25887400
Chem Biol Drug Des. 2007 Jun;69(6):413-22
pubmed: 17581235
Chem Biol. 1995 Nov;2(11):709-12
pubmed: 9383477
Protein Sci. 1997 Apr;6(4):743-60
pubmed: 9098884
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4424-4429
pubmed: 28348247
ACS Med Chem Lett. 2011 Mar 23;2(6):433-7
pubmed: 24900326
J Mol Biol. 2010 Apr 9;397(4):1042-54
pubmed: 20156458
Biopolymers. 1992 Aug;32(8):925-40
pubmed: 1420977
Protein Sci. 2011 Sep;20(9):1607-18
pubmed: 21739503
Future Med Chem. 2011 Dec;3(16):2079-100
pubmed: 22098354
J Biol Chem. 1983 Nov 10;258(21):13193-8
pubmed: 6355105
Biochemistry. 1990 Jul 24;29(29):6927-40
pubmed: 2204424
Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):211-39
pubmed: 16849107
Fold Des. 1997;2(3):173-81
pubmed: 9218955
J Am Chem Soc. 2003 Sep 3;125(35):10570-9
pubmed: 12940739
J Biol Chem. 1992 Dec 5;267(34):24297-301
pubmed: 1447179
Cell. 1994 Aug 26;78(4):693-702
pubmed: 7915201
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):899-907
pubmed: 12037327
Annu Rev Biochem. 1998;67:581-608
pubmed: 9759498
J Biol Chem. 1990 Mar 25;265(9):5055-9
pubmed: 2318882
Structure. 1996 Feb 15;4(2):147-56
pubmed: 8805521
J Biol Chem. 2011 Oct 7;286(40):35051-60
pubmed: 21841195
Annu Rev Biophys. 2013;42:121-42
pubmed: 23654303
Eur Biophys J. 1984;11(2):103-9
pubmed: 6544679
J Am Chem Soc. 2009 Nov 25;131(46):16758-70
pubmed: 19886660
Q Rev Biophys. 2005 Nov;38(4):385-95
pubmed: 16817982