Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection.
adults
air pollution
air-liquid-interface cell culture
children
respiratory infection
Journal
Physiological reports
ISSN: 2051-817X
Titre abrégé: Physiol Rep
Pays: United States
ID NLM: 101607800
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
14
07
2021
received:
23
04
2021
accepted:
15
07
2021
entrez:
20
9
2021
pubmed:
21
9
2021
medline:
1
3
2022
Statut:
ppublish
Résumé
Nasal epithelial cells (NECs) are among the first cells to be exposed to air pollutants and respiratory viruses. Although it is known that air pollution exposure and rhinovirus infections increase the risk for asthma development independently, it is unclear how these risk factors interact on a cellular level. Therefore, we aimed to investigate how exposure to diesel particulate matter (DPM) modifies the response of primary NECs to rhinovirus (RV) infection in vitro. Exposure of re-differentiated, primary NECs (49 healthy children [0-7 years], 12 adults) to DPM modified the mRNA expression of viral cell-surface receptors, pattern recognition receptors, and pro-inflammatory response (also protein levels). After exposure to DPM, we additionally infected the NECs with RV-1b and RV-16. Viral loads (assessed by titration assays) were significantly higher in DPM-exposed compared with non-exposed NECs. Exposure to DPM prior to RV infection resulted in a significant upregulation of pro-inflammatory cytokines (mRNA and protein level) and β-defensins mRNA, and significant downregulation of pattern recognition receptors mRNA and CXCL10 (mRNA and protein levels). There was no difference between all outcomes of NECs from children and adults. We can conclude that exposure to DPM prior to RV infection increases viral loads by downregulation of viral defense receptors and upregulation of pro-inflammatory cytokines. Our findings indicate a strong interaction between air pollution and the antiviral response to RV infection in NECs. We provide mechanistic evidence that exposure to air pollution increases susceptibility to RV infection.
Identifiants
pubmed: 34542243
doi: 10.14814/phy2.14994
pmc: PMC8451029
doi:
Substances chimiques
Air Pollutants
0
CXCL10 protein, human
0
Chemokine CXCL10
0
Particulate Matter
0
Vehicle Emissions
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14994Informations de copyright
© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
Références
Thorax. 2014 Mar;69(3):240-6
pubmed: 24127021
Pediatr Infect Dis J. 2004 Nov;23(11):995-9
pubmed: 15545853
Swiss Med Wkly. 2012 Jul 31;142:w13653
pubmed: 22851042
Mucosal Immunol. 2016 Sep;9(5):1303-16
pubmed: 26906404
Eur Respir J. 2015 Feb;45(2):428-39
pubmed: 25359346
Am J Respir Cell Mol Biol. 2015 Mar;52(3):285-94
pubmed: 25054807
Influenza Other Respir Viruses. 2013 Sep;7(5):701-9
pubmed: 22994877
Curr Opin Allergy Clin Immunol. 2004 Oct;4(5):355-9
pubmed: 15349033
J Allergy Clin Immunol. 2014 Aug;134(2):332-41
pubmed: 24636084
Am J Respir Crit Care Med. 2013 Jun 15;187(12):1341-8
pubmed: 23594341
Part Fibre Toxicol. 2006 May 25;3:9
pubmed: 16723032
J Med Toxicol. 2012 Jun;8(2):166-75
pubmed: 22194192
Science. 2009 Apr 3;324(5923):55-9
pubmed: 19213880
Am J Respir Crit Care Med. 2008 Oct 1;178(7):667-72
pubmed: 18565953
Am J Respir Crit Care Med. 2012 Jan 15;185(2):179-85
pubmed: 22071326
Pediatr Infect Dis J. 2009 Jan;28(1):25-9
pubmed: 19057454
Environ Toxicol. 2016 Jan;31(1):44-57
pubmed: 25045158
Am J Respir Cell Mol Biol. 2021 Mar;64(3):344-356
pubmed: 33264064
Am J Respir Crit Care Med. 2019 Jul 1;200(1):24-32
pubmed: 30871339
Environ Sci Technol. 2010 Apr 1;44(7):2632-8
pubmed: 20230045
Toxicol In Vitro. 2017 Dec;45(Pt 3):409-416
pubmed: 28655636
J Allergy Clin Immunol. 2004 Aug;114(2):239-47
pubmed: 15316497
Toxicol Lett. 2006 Aug 1;165(1):66-70
pubmed: 16504425
Toxicol Sci. 2005 Jun;85(2):990-1002
pubmed: 15772371
J Appl Toxicol. 2018 May;38(5):678-687
pubmed: 29235125
Am J Physiol Lung Cell Mol Physiol. 2016 Jul 1;311(1):L111-23
pubmed: 27190060
Am J Physiol Lung Cell Mol Physiol. 2013 Mar 1;304(5):L332-41
pubmed: 23241529
Eur Respir J. 2020 Nov 5;56(5):
pubmed: 32430434
Allergy Asthma Immunol Res. 2020 Jan;12(1):56-71
pubmed: 31743964
Inhal Toxicol. 2010 Oct;22(12):1038-45
pubmed: 20879958
Environ Int. 2019 May;126:682-689
pubmed: 30870661
Am J Respir Crit Care Med. 2019 Mar 1;199(5):581-591
pubmed: 30157387
Toxicol In Vitro. 2018 Apr;48:221-231
pubmed: 29408669
Exp Lung Res. 2014 Sep;40(7):327-32
pubmed: 25058379
Front Microbiol. 2013 Oct 01;4:293
pubmed: 24098299
Int J Mol Sci. 2016 Aug 25;17(9):
pubmed: 27571064
Arch Environ Health. 1992 Mar-Apr;47(2):116-22
pubmed: 1567234
Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1154-63
pubmed: 16399790
Eur Respir J. 2013 Feb;41(2):443-52
pubmed: 22743674
Nat Immunol. 2015 Jan;16(1):27-35
pubmed: 25521682
Inhal Toxicol. 2013 Oct;25(12):653-60
pubmed: 24102466
Part Fibre Toxicol. 2018 May 2;15(1):19
pubmed: 29716632
BMJ Paediatr Open. 2018 May 24;2(1):e000210
pubmed: 29862329
J Immunol. 2004 Apr 1;172(7):4637-45
pubmed: 15034083
J Thorac Dis. 2015 Jan;7(1):46-58
pubmed: 25694817
Clin Microbiol Rev. 2013 Jan;26(1):135-62
pubmed: 23297263
Respirology. 2015 Jan;20(1):73-9
pubmed: 25219656
Toxicol Lett. 2014 Jul 3;228(1):42-7
pubmed: 24709138