LncRNA MATN1-AS1 for Prediction of Prognosis in Osteosarcoma Patients and Its Cellular Function.
Adolescent
Bone Neoplasms
/ genetics
Cell Line, Tumor
Cell Movement
/ genetics
Cell Proliferation
/ genetics
Female
Humans
Lung Neoplasms
/ genetics
Male
Matrilin Proteins
/ genetics
MicroRNAs
/ genetics
Osteosarcoma
/ genetics
Prognosis
RNA, Antisense
/ genetics
RNA, Long Noncoding
/ genetics
Up-Regulation
Invasion
Lnc MATN1-AS1
Migration
Osteosarcoma
Prognosis
Proliferation
Journal
Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
21
06
2021
accepted:
08
09
2021
pubmed:
21
9
2021
medline:
26
3
2022
entrez:
20
9
2021
Statut:
ppublish
Résumé
Long non-coding RNAs show essential roles in various cancer processes. This study aimed at the expression features, prognosis significance, and biological effect of lnc MATN1-AS1 in osteosarcoma (OS). Five kinds of cell lines and 117 pairs of tissues were analyzed by qRT-PCR for quantification of lnc MATN1-AS1 and miR-1299 level. Clinical data were analyzed using Chi-Square Tests to show the association with lnc MATN1-AS1 level. Kaplan-Meier analysis and Cox regression were used to judge the prognostic value. Cell counting kit-8 and Transwell assay were conducted, respectively, to analyze the effect of lnc MATN1-AS1 on cell proliferation and metastasis. The target miRNA was predicted. lnc MATN1-AS1 level was significantly elevated in OS cells and tissues and related to Enneking staging, lung metastasis, and histologic type. Patients with high lnc MATN1-AS1 level showed a shorter overall survival and recurrence-free survival. Lnc MATN1-AS1 knockdown inhibited OS cell proliferation, migration, and invasion by sponging miR-1299. Lnc MATN1-AS1 has oncogenic features and prognostic significance in OS and is a novel therapeutic strategy for OS.
Identifiants
pubmed: 34542816
doi: 10.1007/s12033-021-00394-9
pii: 10.1007/s12033-021-00394-9
doi:
Substances chimiques
MATN1 protein, human
0
MIRN1299 microRNA, human
0
Matrilin Proteins
0
MicroRNAs
0
RNA, Antisense
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
66-74Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Miller, K. D., Fidler-Benaoudia, M., Keegan, T. H., Hipp, H. S., Jemal, A., & Siegel, R. L. (2020). Cancer statistics for adolescents and young adults, 2020. CA: A Cancer Journal for Clinicians, 70(6), 443–459.
Corre, I., Verrecchia, F., Crenn, V., Redini, F., & Trichet, V. (2020). The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells, 9(4), 976.
doi: 10.3390/cells9040976
Ferguson, J. L., & Turner, S. P. (2018). Bone cancer: Diagnosis and treatment principles. American Family Physician, 98(4), 205–213.
pubmed: 30215968
Whelan, J. S., & Davis, L. E. (2018). Osteosarcoma, chondrosarcoma, and chordoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36(2), 188–193.
doi: 10.1200/JCO.2017.75.1743
Tsuchie, H., Emori, M., Nagasawa, H., Miyakoshi, N., Murahashi, Y., Shimizu, J., et al. (2019). Prognosis of primary osteosarcoma in elderly patients: A comparison between young and elderly patients. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 28(5), 425–431.
doi: 10.1159/000500404
Spraker-Perlman, H. L., Barkauskas, D. A., Krailo, M. D., Meyers, P. A., Schwartz, C. L., Doski, J., et al. (2019). Factors influencing survival after recurrence in osteosarcoma: A report from the Children’s Oncology Group. Pediatric Blood & Cancer, 66(1), e27444.
doi: 10.1002/pbc.27444
Biermann, J. S., Chow, W., Reed, D. R., Lucas, D., Adkins, D. R., Agulnik, M., et al. (2017). NCCN guidelines insights: Bone cancer, version 2.2017. Journal of the National Comprehensive Cancer Network: JNCCN, 15(2), 155–167.
doi: 10.6004/jnccn.2017.0017
Flippot, R., Malouf, G. G., Su, X., Mouawad, R., Spano, J. P., & Khayat, D. (2016). Cancer subtypes classification using long non-coding RNA. Oncotarget, 7(33), 54082–54093.
doi: 10.18632/oncotarget.10213
Wang, L., Cho, K. B., Li, Y., Tao, G., Xie, Z., & Guo, B. (2019). Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. International Journal of Molecular Sciences, 20(22), 5758.
doi: 10.3390/ijms20225758
Wang, W., Lou, W., Ding, B., Yang, B., Lu, H., Kong, Q., et al. (2019). A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging, 11(9), 2610–2627.
doi: 10.18632/aging.101933
García-Venzor, A., Mandujano-Tinoco, E. A., Lizarraga, F., Zampedri, C., Krötzsch, E., Salgado, R. M., et al. (2019). Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. Biochimica et biophysica acta Molecular Cell Research, 1866(12), 118523.
doi: 10.1016/j.bbamcr.2019.118523
Kopp, F., & Mendell, J. T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell, 172(3), 393–407.
doi: 10.1016/j.cell.2018.01.011
Schmitz, S. U., Grote, P., & Herrmann, B. G. (2016). Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences: CMLS, 73(13), 2491–2509.
doi: 10.1007/s00018-016-2174-5
Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long noncoding RNA and cancer: A new paradigm. Cancer Research, 77(15), 3965–3981.
doi: 10.1158/0008-5472.CAN-16-2634
Shen, Y., Peng, X., & Shen, C. (2020). Identification and validation of immune-related lncRNA prognostic signature for breast cancer. Genomics, 112(3), 2640–2646.
doi: 10.1016/j.ygeno.2020.02.015
Zhang, G., Fan, E., Zhong, Q., Feng, G., Shuai, Y., Wu, M., et al. (2019). Identification and potential mechanisms of a 4-lncRNA signature that predicts prognosis in patients with laryngeal cancer. Human Genomics, 13(1), 36.
doi: 10.1186/s40246-019-0230-6
Yang, K., Hou, Y., Li, A., Li, Z., Wang, W., Xie, H., et al. (2017). Identification of a six-lncRNA signature associated with recurrence of ovarian cancer. Scientific Reports, 7(1), 752.
doi: 10.1038/s41598-017-00763-y
Ying, T., Dong, J. L., Yuan, C., Li, P., & Guo, Q. (2020). The lncRNAs RP1-261G23.7, RP11-69E11.4 and SATB2-AS1 are a novel clinical signature for predicting recurrent osteosarcoma. Bioscience Reports, 40(1), BSR2019125.
doi: 10.1042/BSR20191251
Chao-Yang, G., Rong, T., Yong-Qiang, S., Tai-Cong, L., Kai-Sheng, Z., Wei, N., et al. (2021). Prognostic signatures of metabolic genes and metabolism-related long non-coding RNAs accurately predict overall survival for osteosarcoma patients. Frontiers in Cell and Developmental Biology, 9, 644220.
doi: 10.3389/fcell.2021.644220
Cui, H., Zhang, Y., Zhang, Q., Chen, W., Zhao, H., & Liang, J. (2017). A comprehensive genome-wide analysis of long noncoding RNA expression profile in hepatocellular carcinoma. Cancer Medicine, 6(12), 2932–2941.
doi: 10.1002/cam4.1180
Shen, A., Ma, J., Hu, X., & Cui, X. (2020). High expression of lncRNA-SNHG7 is associated with poor prognosis in hepatocellular carcinoma. Oncology Letters, 19(6), 3959–3963.
pubmed: 32382340
pmcid: 7202315
Zhang, L., Chi, B., Chai, J., Qin, L., Zhang, G., Hua, P., et al. (2021). LncRNA CCDC144NL-AS1 serves as a prognosis biomarker for non-small cell lung cancer and promotes cellular function by targeting miR-490-3p. Molecular Biotechnology. https://doi.org/10.1007/s12033-021-00351-6
doi: 10.1007/s12033-021-00351-6
pubmed: 34855100
pmcid: 8316222
Gao, H., Guo, Y., Zhang, M., & Yi, Z. (2020). Comprehensive characterization of prognostic long noncoding RNAs in osteosarcoma. BioMed Research International, 2020, 6725753.
pubmed: 32908905
pmcid: 7468628
Enneking, W. F., Spanier, S. S., & Goodman, M. A. (2003). A system for the surgical staging of musculoskeletal sarcoma. 1980. Clinical Orthopaedics and Related Research, 415, 4–18.
doi: 10.1097/01.blo.0000093891.12372.0f
Müller, V., Oliveira-Ferrer, L., Steinbach, B., Pantel, K., & Schwarzenbach, H. (2019). Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Molecular Oncology, 13(5), 1137–1149.
doi: 10.1002/1878-0261.12472
Li, L., Kong, X. A., Zang, M., Dong, J., Feng, Y., Gui, B., et al. (2020). Hsa_circ_0003732 promotes osteosarcoma cells proliferation via miR-545/CCNA2 axis. Bioscience Reports, 40, BSR20191552.
doi: 10.1042/BSR20191552
Zheng, S., Jiang, F., Ge, D., Tang, J., Chen, H., Yang, J., et al. (2019). LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112, 108695.
doi: 10.1016/j.biopha.2019.108695
Ritter, J., & Bielack, S. S. (2010). Osteosarcoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 21(Suppl 7), vii320–vii325.
doi: 10.1093/annonc/mdq276
Moore, D. D., & Luu, H. H. (2014). Osteosarcoma. Cancer Treatment and Research, 162, 65–92.
doi: 10.1007/978-3-319-07323-1_4
Zhang, H., Su, X., Guo, L., Zhong, L., Li, W., Yue, Z., et al. (2014). Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. International Journal of Medical Sciences, 11(12), 1262–1269.
doi: 10.7150/ijms.10038
Evola, F. R., Costarella, L., Pavone, V., Caff, G., Cannavò, L., Sessa, A., et al. (2017). Biomarkers of osteosarcoma, chondrosarcoma, and ewing sarcoma. Frontiers in Pharmacology, 8, 150.
doi: 10.3389/fphar.2017.00150
Chen, W., Chen, M., Xu, Y., Chen, X., Zhou, P., Zhao, X., et al. (2018). Long non-coding RNA THOR promotes human osteosarcoma cell growth in vitro and in vivo. Biochemical and Biophysical Research Communications, 499(4), 913–919.
doi: 10.1016/j.bbrc.2018.04.019
Botti, G., Giordano, A., Feroce, F., De Chiara, A. R., & Cantile, M. (2019). Noncoding RNAs as circulating biomarkers in osteosarcoma patients. Journal of Cellular Physiology, 234(11), 19249–19255.
doi: 10.1002/jcp.28744
Li, Z., Dou, P., Liu, T., & He, S. (2017). Application of long noncoding RNAs in osteosarcoma: Biomarkers and therapeutic targets. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 42(4), 1407–1419.
doi: 10.1159/000479205
Zhou, D. K., Yang, X. W., Li, H., Yang, Y., Zhu, Z. J., & Wu, N. (2017). Up-regulation of long noncoding RNA CCAL predicts poor patient prognosis and promotes tumor metastasis in osteosarcoma. The International Journal of Biological Markers, 32(1), e108–e112.
doi: 10.5301/jbm.5000240
Wang, Z., Tan, M., Chen, G., Li, Z., & Lu, X. (2017). LncRNA SOX2-OT is a novel prognostic biomarker for osteosarcoma patients and regulates osteosarcoma cells proliferation and motility through modulating SOX2. IUBMB Life, 69(11), 867–876.
doi: 10.1002/iub.1681
Sun, H., Peng, G., Wu, H., Liu, M., Mao, G., Ning, X., et al. (2020). Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (review). Biomedical Reports, 13(1), 15–21.
doi: 10.3892/br.2020.1305
Zhao, Z., Chen, J., & Xia, D. (2021). Knockdown of HCG18 inhibits cell viability, migration and invasion in pediatric osteosarcoma by targeting miR-188-5p/FOXC1 axis. Molecular Biotechnology, 63, 807–817.
doi: 10.1007/s12033-021-00343-6
Shi, D., Wu, F., Mu, S., Hu, B., Zhong, B., Gao, F., et al. (2019). LncRNA AFAP1-AS1 promotes tumorigenesis and epithelial-mesenchymal transition of osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 375.
doi: 10.1186/s13046-019-1363-0
Zhu, J., Gu, W., & Yu, C. (2020). MATN1-AS1 promotes glioma progression by functioning as ceRNA of miR-200b/c/429 to regulate CHD1 expression. Cell Proliferation, 53(1), e12700.
pubmed: 31667976
Wang, C., Jing, J., & Cheng, L. (2018). Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Investigational New Drugs, 36(6), 1116–1132.
doi: 10.1007/s10637-018-0624-7