Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models.
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
03
06
2021
accepted:
01
09
2021
revised:
30
09
2021
pubmed:
21
9
2021
medline:
15
12
2021
entrez:
20
9
2021
Statut:
epublish
Résumé
The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded.
Identifiants
pubmed: 34543261
doi: 10.1371/journal.pcbi.1009169
pii: PCOMPBIOL-D-21-01021
pmc: PMC8483419
doi:
Banques de données
figshare
['10.6084/m9.figshare.14877780']
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009169Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Neuron. 2012 Dec 20;76(6):1175-88
pubmed: 23259952
Sens Processes. 1977 May;1(3):204-11
pubmed: 887950
PLoS One. 2011;6(9):e24921
pubmed: 21966386
J Neurosci. 1999 Dec 15;19(24):10727-37
pubmed: 10594056
PLoS Comput Biol. 2010 Feb 19;6(2):e1000679
pubmed: 20174555
Nature. 2007 Aug 16;448(7155):802-6
pubmed: 17700699
J Neurophysiol. 2015 Aug;114(2):1022-33
pubmed: 26019310
PLoS Comput Biol. 2017 Nov 15;13(11):e1005760
pubmed: 29140973
Neuron. 2005 Aug 18;47(4):593-605
pubmed: 16102541
Neuron. 2012 Dec 20;76(6):1161-74
pubmed: 23259951
Neural Comput. 2011 Jan;23(1):1-45
pubmed: 20964538
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5843-8
pubmed: 21436050
Front Behav Neurosci. 2014 Sep 17;8:326
pubmed: 25278856
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19579-84
pubmed: 24218586
Physiol Behav. 1980 Mar;24(3):601-5
pubmed: 7375580
Exp Neurol. 1966 Jan;14(1):44-56
pubmed: 5900523
J Math Neurosci. 2019 May 9;9(1):2
pubmed: 31073652
J Neurosci. 2013 Feb 13;33(7):3037-58
pubmed: 23407960
J Neurosci. 2006 Jan 25;26(4):1247-59
pubmed: 16436612
Physiol Behav. 2021 Sep 1;238:113480
pubmed: 34058218
Chem Senses. 2010 Nov;35(9):767-76
pubmed: 20702508
J Neurosci. 2009 Aug 19;29(33):10234-53
pubmed: 19692598
Neuroimage. 2020 May 15;212:116664
pubmed: 32087375
Neuron. 2006 Mar 16;49(6):889-904
pubmed: 16543136
Chem Senses. 2006 Feb;31(2):107-18
pubmed: 16354744
Nat Neurosci. 2014 Oct;17(10):1410-7
pubmed: 25195105
Annu Rev Neurosci. 2016 Jul 8;39:237-56
pubmed: 27145916
J Math Neurosci. 2018 Jun 6;8(1):8
pubmed: 29872932
Nat Rev Neurosci. 2006 May;7(5):358-66
pubmed: 16760916
BMC Neurosci. 2013 Apr 08;14:45
pubmed: 23565900
Phys Rev E. 2017 Aug;96(2-1):022413
pubmed: 28950506
Nat Neurosci. 2009 Sep;12(9):1136-44
pubmed: 19684589
J Vis. 2006 Apr 28;6(4):414-28
pubmed: 16889478
J Neurophysiol. 2007 Mar;97(3):1941-50
pubmed: 17215498
PLoS Comput Biol. 2011 Jan 20;7(1):e1001056
pubmed: 21283777
J Neurobiol. 2005 Nov;65(2):97-114
pubmed: 16114031
J Neurosci. 2014 May 14;34(20):6970-84
pubmed: 24828650
Nat Neurosci. 2016 Apr;19(4):634-641
pubmed: 26974951
Chem Senses. 2004 Jun;29(5):365-79
pubmed: 15201204
Front Neuroanat. 2019 Jan 07;12:115
pubmed: 30666191
Brain Res. 1997 Jan 16;745(1-2):189-96
pubmed: 9037409
Neuron. 2015 Jun 17;86(6):1461-77
pubmed: 26051422
Physiol Rev. 1992 Apr;72(2):491-505
pubmed: 1557430
J Neurophysiol. 2001 Oct;86(4):1899-907
pubmed: 11600649
PLoS Comput Biol. 2017 Apr 27;13(4):e1005506
pubmed: 28448499
Neuron. 2010 Nov 4;68(3):570-85
pubmed: 21040855
Nature. 2008 Aug 21;454(7207):995-9
pubmed: 18650810
J Neurophysiol. 2004 Aug;92(2):743-53
pubmed: 15277594
J Neurophysiol. 2009 Feb;101(2):1073-88
pubmed: 19091924
J Neurosci. 2012 Jun 6;32(23):7949-59
pubmed: 22674270
Nat Neurosci. 1999 Dec;2(12):1106-13
pubmed: 10570488
PLoS One. 2010 Sep 30;5(9):
pubmed: 20927352
Neuron. 2011 Sep 22;71(6):962-73
pubmed: 21943596
Trends Neurosci. 2003 Sep;26(9):501-6
pubmed: 12948662
J Neurosci. 2006 Apr 5;26(14):3646-55
pubmed: 16597718
J Neurosci. 2006 Aug 23;26(34):8857-65
pubmed: 16928875
iScience. 2021 Aug 04;24(9):102946
pubmed: 34485855