HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
09 2021
Historique:
received: 15 03 2021
accepted: 04 09 2021
revised: 30 09 2021
pubmed: 21 9 2021
medline: 25 11 2021
entrez: 20 9 2021
Statut: epublish

Résumé

The capsid (CA) lattice of the HIV-1 core plays a key role during infection. From the moment the core is released into the cytoplasm, it interacts with a range of cellular factors that, ultimately, direct the pre-integration complex to the integration site. For integration to occur, the CA lattice must disassemble. Early uncoating or a failure to do so has detrimental effects on virus infectivity, indicating that an optimal stability of the viral core is crucial for infection. Here, we introduced cysteine residues into HIV-1 CA in order to induce disulphide bond formation and engineer hyper-stable mutants that are slower or unable to uncoat, and then followed their replication. From a panel of mutants, we identified three with increased capsid stability in cells and found that, whilst the M68C/E212C mutant had a 5-fold reduction in reverse transcription, two mutants, A14C/E45C and E180C, were able to reverse transcribe to approximately WT levels in cycling cells. Moreover, these mutants only had a 5-fold reduction in 2-LTR circle production, suggesting that not only could reverse transcription complete in hyper-stable cores, but that the nascent viral cDNA could enter the nuclear compartment. Furthermore, we observed A14C/E45C mutant capsid in nuclear and chromatin-associated fractions implying that the hyper-stable cores themselves entered the nucleus. Immunofluorescence studies revealed that although the A14C/E45C mutant capsid reached the nuclear pore with the same kinetics as wild type capsid, it was then retained at the pore in association with Nup153. Crucially, infection with the hyper-stable mutants did not promote CPSF6 re-localisation to nuclear speckles, despite the mutant capsids being competent for CPSF6 binding. These observations suggest that hyper-stable cores are not able to uncoat, or remodel, enough to pass through or dissociate from the nuclear pore and integrate successfully. This, is turn, highlights the importance of capsid lattice flexibility for nuclear entry. In conclusion, we hypothesise that during a productive infection, a capsid remodelling step takes place at the nuclear pore that releases the core complex from Nup153, and relays it to CPSF6, which then localises it to chromatin ready for integration.

Identifiants

pubmed: 34543344
doi: 10.1371/journal.ppat.1009484
pii: PPATHOGENS-D-21-00565
pmc: PMC8483370
doi:

Substances chimiques

Capsid Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1009484

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Arthritis Research UK
ID : FC001042
Pays : United Kingdom
Organisme : Arthritis Research UK
ID : FC001178
Pays : United Kingdom

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Cell Rep. 2015 Nov 24;13(8):1717-31
pubmed: 26586435
Viruses. 2021 Jul 22;13(8):
pubmed: 34452291
Science. 2008 Feb 15;319(5865):921-6
pubmed: 18187620
J Am Chem Soc. 2013 Oct 30;135(43):16133-47
pubmed: 24066695
J Virol. 2003 May;77(9):5439-50
pubmed: 12692245
J Virol. 2001 Apr;75(8):3626-35
pubmed: 11264352
Elife. 2019 Jan 23;8:
pubmed: 30672737
J Virol. 2020 May 18;94(11):
pubmed: 32238582
Nat Rev Microbiol. 2015 Aug;13(8):471-83
pubmed: 26179359
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7169-E7178
pubmed: 28784755
Cell. 1996 Dec 27;87(7):1285-94
pubmed: 8980234
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10):
pubmed: 33649225
Int J Pept Protein Res. 1990 Aug;36(2):147-55
pubmed: 2272751
Nat Rev Mol Cell Biol. 2002 Nov;3(11):836-47
pubmed: 12415301
EMBO J. 2003 Apr 1;22(7):1707-15
pubmed: 12660176
Nature. 1994 Nov 24;372(6504):359-62
pubmed: 7969494
J Mol Biol. 2011 Feb 25;406(3):371-86
pubmed: 21146540
J Biol Chem. 2016 May 27;291(22):11809-19
pubmed: 26994143
PLoS Pathog. 2018 Jun 15;14(6):e1007117
pubmed: 29906285
J Virol. 2002 Jun;76(11):5667-77
pubmed: 11991995
Nat Microbiol. 2019 Nov;4(11):1840-1850
pubmed: 31611641
PLoS Pathog. 2012;8(8):e1002896
pubmed: 22956906
Cell Host Microbe. 2018 Apr 11;23(4):536-548.e6
pubmed: 29649444
J Virol. 2013 Jan;87(1):683-7
pubmed: 23077298
PLoS Pathog. 2014 Oct 30;10(10):e1004459
pubmed: 25356722
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9975-80
pubmed: 21628558
Virus Res. 2014 Nov 26;193:116-29
pubmed: 25036886
Nature. 2011 Jan 20;469(7330):424-7
pubmed: 21248851
Science. 2020 Oct 9;370(6513):
pubmed: 33033190
Annu Rev Genet. 1998;32:163-84
pubmed: 9928478
Cell. 2021 Feb 18;184(4):1032-1046.e18
pubmed: 33571428
J Virol. 2014 Dec;88(23):13613-25
pubmed: 25231297
mBio. 2019 Nov 5;10(6):
pubmed: 31690677
Viruses. 2020 Oct 30;12(11):
pubmed: 33143125
Retrovirology. 2012 Apr 19;9:30
pubmed: 22515365
Nature. 2020 Aug;584(7822):614-618
pubmed: 32612233
J Virol. 2017 May 26;91(12):
pubmed: 28381579
Cell Host Microbe. 2013 Nov 13;14(5):535-46
pubmed: 24237699
Nat Commun. 2020 Jul 14;11(1):3505
pubmed: 32665593
Retrovirology. 2016 Mar 15;13:17
pubmed: 26979152
PLoS Pathog. 2017 Aug 21;13(8):e1006570
pubmed: 28827840
PLoS One. 2012;7(9):e46037
pubmed: 23049930
Science. 1999 Jan 1;283(5398):80-3
pubmed: 9872746
PLoS Pathog. 2011 Mar;7(3):e1002009
pubmed: 21455494
J Virol. 2015 May;89(10):5350-61
pubmed: 25741002
Adv Exp Med Biol. 2012;726:441-65
pubmed: 22297526
J Mol Biol. 2010 Sep 3;401(5):985-95
pubmed: 20600115
Cell Rep. 2020 Sep 29;32(13):108201
pubmed: 32997983
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5486-5493
pubmed: 32094182
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5247-52
pubmed: 11929983
Elife. 2018 Jun 07;7:
pubmed: 29877795
Nat Med. 2001 May;7(5):631-4
pubmed: 11329067
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18625-30
pubmed: 25518861
Science. 2020 Oct 16;370(6514):360-364
pubmed: 33060363
Nat Microbiol. 2020 Sep;5(9):1088-1095
pubmed: 32483230
J Virol. 2011 Aug;85(15):7818-27
pubmed: 21593146
Cell. 2009 Nov 13;139(4):780-90
pubmed: 19914170
J Mol Biol. 2011 Jul 22;410(4):534-52
pubmed: 21762799
Mol Cell Biol. 1990 Aug;10(8):4239-42
pubmed: 2370865
Nature. 2013 Nov 21;503(7476):402-405
pubmed: 24196705
J Virol. 1997 Jul;71(7):5382-90
pubmed: 9188609
J Virol. 2020 Mar 17;94(7):
pubmed: 31941774
PLoS Pathog. 2016 Jun 21;12(6):e1005700
pubmed: 27327622
PLoS Pathog. 2016 Jun 20;12(6):e1005709
pubmed: 27322072
Cells. 2019 Nov 09;8(11):
pubmed: 31717499
Nature. 2004 Feb 26;427(6977):848-53
pubmed: 14985764
J Cell Biol. 2002 Nov 11;159(3):441-52
pubmed: 12417576
Science. 2016 Dec 16;354(6318):1434-1437
pubmed: 27980210
Retrovirology. 2016 Aug 22;13(1):58
pubmed: 27549239
Nature. 2013 May 30;497(7451):643-6
pubmed: 23719463
J Virol. 2018 Sep 26;92(20):
pubmed: 30089694
Retrovirology. 2013 Mar 06;10:29
pubmed: 23497318
J Virol. 2011 Jan;85(1):542-9
pubmed: 20962083
mBio. 2020 Sep 29;11(5):
pubmed: 32994325
PLoS Pathog. 2011 Dec;7(12):e1002439
pubmed: 22174692
Nat Biotechnol. 1997 Sep;15(9):871-5
pubmed: 9306402
EMBO J. 2021 Jan 4;40(1):e105247
pubmed: 33270250
PLoS Pathog. 2008 Dec;4(12):e1000231
pubmed: 19057663
Methods Mol Biol. 2014;1087:29-36
pubmed: 24158811
Cell. 2008 Oct 3;135(1):49-60
pubmed: 18854154
Cell. 2009 Jun 26;137(7):1282-92
pubmed: 19523676
Nat Med. 2000 Jan;6(1):76-81
pubmed: 10613828
Cold Spring Harb Perspect Med. 2012 May;2(5):a006940
pubmed: 22553496
Gene Ther. 2001 Nov;8(21):1665-8
pubmed: 11895005
Cell Host Microbe. 2018 Sep 12;24(3):392-404.e8
pubmed: 30173955
J Virol. 2004 Mar;78(5):2545-52
pubmed: 14963157
J Virol. 2021 Mar 10;:
pubmed: 33692202
Science. 2015 Jul 3;349(6243):99-103
pubmed: 26044298
Nat Commun. 2015 Mar 30;6:6660
pubmed: 25818806
J Cell Sci. 2017 Dec 15;130(24):4180-4192
pubmed: 29133588
Curr Biol. 2008 Aug 26;18(16):1192-202
pubmed: 18722123

Auteurs

Anabel Guedán (A)

Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom.

Callum D Donaldson (CD)

Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom.

Eve R Caroe (ER)

Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom.

Ophélie Cosnefroy (O)

Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom.

Ian A Taylor (IA)

Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom.

Kate N Bishop (KN)

Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH