PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
21
04
2021
accepted:
03
09
2021
revised:
30
09
2021
pubmed:
21
9
2021
medline:
25
11
2021
entrez:
20
9
2021
Statut:
epublish
Résumé
Viruses use diverse strategies to impair the antiviral immunity of host in order to promote infection and pathogenesis. Herein, we found that PCV2 infection promotes the infection of DNA viruses through inhibiting IFN-β induction in vivo and in vitro. In the early phase of infection, PCV2 promotes the phosphorylation of cGAS at S278 via activation of PI3K/Akt signaling, which directly silences the catalytic activity of cGAS. Subsequently, phosphorylation of cGAS at S278 can facilitate the K48-linked poly-ubiquitination of cGAS at K389, which can been served as a signal for recognizing by the ubiquitin-binding domain of histone deacetylase 6 (HDAC6), to promote the translocation of K48-ubiquitinated-cGAS from cytosol to autolysosome depending on the deacetylase activity of HDAC6, thereby eventually resulting in a markedly increased cGAS degradation in PCV2 infection-induced autophagic cells relative to Earle's Balanced Salt Solution (EBSS)-induced autophagic cells (a typical starving autophagy). Importantly, we found that PCV2 Cap and its binding protein gC1qR act as predominant regulators to promote porcine cGAS phosphorylation and HDAC6 activation through mediating PI3K/AKT signaling and PKCδ signaling activation. Based on this finding, gC1qR-binding activity deficient PCV2 mutant (PCV2RmA) indeed shows a weakened inhibitory effect on IFN-β induction and a weaker boost effect for other DNA viruses infection compared to wild-type PCV2. Collectively, our findings illuminate a systematic regulation mechanism by which porcine circovirus counteracts the cGAS-STING signaling pathway to inhibit the type I interferon induction and promote DNA virus infection, and identify gC1qR as an important regulator for the immunosuppression induced by PCV2.
Identifiants
pubmed: 34543359
doi: 10.1371/journal.ppat.1009940
pii: PPATHOGENS-D-21-00857
pmc: PMC8483418
doi:
Substances chimiques
Interferon Type I
0
Nucleotidyltransferases
EC 2.7.7.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009940Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Virol. 2018 May 14;92(11):
pubmed: 29514908
Cell Rep. 2014 Feb 13;6(3):421-30
pubmed: 24462292
PLoS Pathog. 2017 Mar 8;13(3):e1006264
pubmed: 28273161
Cell Rep. 2013 May 30;3(5):1355-61
pubmed: 23707065
Cell. 2013 May 23;153(5):1094-107
pubmed: 23647843
Nat Rev Genet. 2019 Nov;20(11):657-674
pubmed: 31358977
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1530-5
pubmed: 19164550
Cell Host Microbe. 2018 Jul 11;24(1):69-80.e4
pubmed: 29937271
Virus Res. 2009 Aug;143(2):177-83
pubmed: 19647885
Nat Immunol. 2015 Oct;16(10):1025-33
pubmed: 26343537
Can Vet J. 1998 Jan;39(1):44-51
pubmed: 9442952
J Virol. 2017 Feb 28;91(6):
pubmed: 28077645
Transbound Emerg Dis. 2020 May;67(3):1057-1061
pubmed: 31823481
Cell Rep. 2019 Mar 26;26(13):3798
pubmed: 30917330
Cell Rep. 2015 Oct 13;13(2):440-9
pubmed: 26440888
Anim Health Res Rev. 2009 Jun;10(1):1-20
pubmed: 18761774
Cell Host Microbe. 2018 Aug 8;24(2):234-248.e5
pubmed: 30092200
Nature. 2013 Jun 20;498(7454):332-7
pubmed: 23722159
J Virol. 2006 Apr;80(7):3487-94
pubmed: 16537616
Viruses. 2019 Dec 20;12(1):
pubmed: 31861933
Ticks Tick Borne Dis. 2018 May;9(4):836-839
pubmed: 29567144
J Genet Genomics. 2017 May 20;44(5):243-250
pubmed: 28529077
Mol Cell. 2016 Oct 6;64(1):105-119
pubmed: 27666593
Pathogens. 2020 May 31;9(6):
pubmed: 32486429
Trends Biochem Sci. 2017 Nov;42(11):873-886
pubmed: 28947091
Viruses. 2019 Dec 10;11(12):
pubmed: 31835539
Cell. 2013 Aug 15;154(4):748-62
pubmed: 23910378
Nature. 2017 Sep 21;549(7672):394-398
pubmed: 28902841
Sci Rep. 2017 Jun 15;7(1):3594
pubmed: 28620207
Vet Microbiol. 2020 Jan;240:108502
pubmed: 31902505
J Virol. 2012 Feb;86(3):1358-71
pubmed: 22114345
Science. 2010 Jun 25;328(5986):1703-5
pubmed: 20508090
Virus Res. 2012 Mar;164(1-2):10-9
pubmed: 22056845
Cell Res. 2020 Aug;30(8):639-648
pubmed: 32541866
Vet Microbiol. 2017 May;204:54-58
pubmed: 28532806
EMBO J. 2014 Dec 17;33(24):2937-46
pubmed: 25425575
EMBO Rep. 2017 Oct;18(10):1707-1715
pubmed: 28801534
Virol Sin. 2018 Apr;33(2):117-124
pubmed: 29546673
Nature. 2019 Feb;566(7743):259-263
pubmed: 30728498
Front Microbiol. 2019 Sep 10;10:2050
pubmed: 31551984
Cell Host Microbe. 2015 Sep 9;18(3):333-44
pubmed: 26320998
Annu Rev Biochem. 2017 Jun 20;86:129-157
pubmed: 28375744
J Immunol. 2017 May 1;198(9):3627-3636
pubmed: 28363908
Annu Rev Anim Biosci. 2013 Jan;1:43-64
pubmed: 25387012
Science. 2013 Feb 15;339(6121):786-91
pubmed: 23258413
Virus Genes. 2016 Aug;52(4):437-44
pubmed: 27016220
Nat Immunol. 2016 Sep 20;17(10):1142-9
pubmed: 27648547
J Virol. 2019 Nov 13;93(23):
pubmed: 31511386
Virology. 2009 Mar 30;386(1):122-31
pubmed: 19178923
Immunity. 2013 Dec 12;39(6):1019-31
pubmed: 24332030
Science. 2013 Feb 15;339(6121):826-30
pubmed: 23258412
J Virol. 2018 Feb 26;92(6):
pubmed: 29263269
Annu Rev Biochem. 2017 Jun 20;86:193-224
pubmed: 28460188
J Virol. 2018 Jul 17;92(15):
pubmed: 29793952
Cell Rep. 2013 May 30;3(5):1362-8
pubmed: 23707061
Mol Cell Oncol. 2015 Jul 06;3(3):e1061097
pubmed: 27314077
J Immunol. 2018 Jul 15;201(2):533-547
pubmed: 29858268
Mol Cell. 2021 Jul 1;81(13):2823-2837.e9
pubmed: 34015248
EMBO J. 2018 Sep 14;37(18):
pubmed: 30065070
Curr Opin Immunol. 2020 Oct;66:27-34
pubmed: 32339908
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1773-81
pubmed: 25831530
Nat Microbiol. 2017 Mar 27;2:17037
pubmed: 28346446
J Virol. 2012 Nov;86(22):12003-12
pubmed: 22915817
EMBO J. 2010 Mar 3;29(5):969-80
pubmed: 20075865
Immunity. 2016 Sep 20;45(3):555-569
pubmed: 27637147
Trends Immunol. 2017 Oct;38(10):733-743
pubmed: 28416447