Evolution and progression of Barrett's oesophagus to oesophageal cancer.
Journal
Nature reviews. Cancer
ISSN: 1474-1768
Titre abrégé: Nat Rev Cancer
Pays: England
ID NLM: 101124168
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
accepted:
12
08
2021
pubmed:
22
9
2021
medline:
16
12
2021
entrez:
21
9
2021
Statut:
ppublish
Résumé
Cancer cells are shaped through an evolutionary process of DNA mutation, cell selection and population expansion. Early steps in this process are driven by a set of mutated driver genes and structural alterations to the genome through copy number gains or losses. Oesophageal adenocarcinoma (EAC) and the pre-invasive tissue, Barrett's oesophagus (BE), provide an ideal example in which to observe and study this evolution. BE displays early genomic instability, specifically in copy number changes that may later be observed in EAC. Furthermore, these early changes result in patterns of progression (that is, 'born bad', gradual or catastrophic) that may help to describe the evolution of EAC. As only a small proportion of patients with BE will go on to develop cancer, a better understanding of these patterns and the resulting genomic changes should improve early detection in EAC and may provide clues for the evolution of cancer more broadly.
Identifiants
pubmed: 34545238
doi: 10.1038/s41568-021-00400-x
pii: 10.1038/s41568-021-00400-x
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
731-741Subventions
Organisme : Medical Research Council
ID : MC_UU_12022/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/W014122/1
Pays : United Kingdom
Organisme : Cancer Research UK
Pays : United Kingdom
Organisme : Medical Research Council
ID : RG84369
Pays : United Kingdom
Informations de copyright
© 2021. Springer Nature Limited.
Références
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). This work, coming out of the largest pan-cancer analysis to date, establishes the concept of early and late mutations in the evolution of tumours, suggesting that early gene mutations might be detectable and offer the potential of earlier treatment.
pubmed: 32025013
pmcid: 7054212
doi: 10.1038/s41586-019-1907-7
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012
pmcid: 7025897
doi: 10.1038/s41586-019-1913-9
Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).
pubmed: 24071852
pmcid: 3966983
doi: 10.1038/ng.2760
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).
pubmed: 23318258
pmcid: 3588146
doi: 10.1016/j.celrep.2012.12.008
Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).
pubmed: 26192915
pmcid: 4556068
doi: 10.1038/ng.3357
ICGC/TCGA. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Alexandrov, L. B., Kim, J., Haradhvala, N. J. & Huang, M. N. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
doi: 10.1038/s41586-020-1943-3
pmcid: 7054213
Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
pubmed: 25999502
pmcid: 4471149
doi: 10.1126/science.aaa6806
Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 (2016).
pubmed: 27528664
pmcid: 5024639
doi: 10.1073/pnas.1607794113
Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).
pubmed: 31645727
pmcid: 6837891
doi: 10.1038/s41586-019-1670-9
Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).
pubmed: 30185910
pmcid: 6163040
doi: 10.1038/s41586-018-0497-0
Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).
pubmed: 31171663
pmcid: 7350423
doi: 10.1126/science.aaw0726
Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).
pubmed: 19360079
pmcid: 2821689
doi: 10.1038/nature07943
Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 961–968 (2016).
Jakubek, Y. A. et al. Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat. Biotechnol. 38, 90–96 (2020).
pubmed: 31685958
doi: 10.1038/s41587-019-0297-6
Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10, 87–101 (2010).
pubmed: 20094044
pmcid: 2879265
doi: 10.1038/nrc2773
Spechler, S. J. Carcinogenesis at the gastroesophageal junction: free radicals at the frontier. Gastroenterology 122, 1518–1520 (2002).
pubmed: 11984536
doi: 10.1053/gast.2002.33368
Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).
pubmed: 25220842
doi: 10.1002/ijc.29210
Thrift, A. P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 432–443 (2021).
pubmed: 33603224
doi: 10.1038/s41575-021-00419-3
Hvid-Jensen, F. et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365, 1375–1383 (2011). This work is one of the largest population-based studies to show that the risk of progression from non-dysplastic BE to EAC is very low (≤0.3% per year).
pubmed: 21995385
doi: 10.1056/NEJMoa1103042
Smyth, E. C. et al. Oesophageal cancer. Nat. Rev. Dis. Prim. 3, 17048 (2017).
pubmed: 28748917
doi: 10.1038/nrdp.2017.48
Wani, S., Rubenstein, J. H., Vieth, M. & Bergman, J. Diagnosis and management of low-grade dysplasia in Barrett’s esophagus: expert review from the clinical practice updates committee of the American Gastroenterological Association. Gastroenterology 151, 822–835 (2016).
pubmed: 27702561
doi: 10.1053/j.gastro.2016.09.040
Killcoyne, S. et al. Identification of prognostic phenotypes of esophageal adenocarcinoma in two independent cohorts. Gastroenterology 155, 1720–1728 (2018).
pubmed: 30165050
doi: 10.1053/j.gastro.2018.08.036
Bhat, S. K. et al. Oesophageal adenocarcinoma and prior diagnosis of Barrett’s oesophagus: a population-based study. Gut 64, 20–25 (2015).
pubmed: 24700439
doi: 10.1136/gutjnl-2013-305506
The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).
pmcid: 5651175
doi: 10.1038/nature20805
Frankell, A. M. et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 51, 506–516 (2019).
pubmed: 30718927
pmcid: 6420087
doi: 10.1038/s41588-018-0331-5
Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016).
pubmed: 27595477
pmcid: 5957269
doi: 10.1038/ng.3659
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084
pmcid: 3414841
doi: 10.1016/j.cell.2012.04.024
Maley, C. C. et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64, 7629–7633 (2004).
pubmed: 15492292
doi: 10.1158/0008-5472.CAN-04-1738
Martinez, P. et al. Dynamic clonal equilibrium and predetermined cancer risk in Barrett’s oesophagus. Nat. Commun. 7, 12158 (2016).
pubmed: 27538785
pmcid: 4992167
doi: 10.1038/ncomms12158
Killcoyne, S. et al. Genomic copy number predicts esophageal cancer years before transformation. Nat. Med. 26, 1726–1732 (2020).
pubmed: 32895572
pmcid: 7116403
doi: 10.1038/s41591-020-1033-y
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). This paper together with Alexandrov et al. (Cell Reports, 2013 and Nature, 2020) establishes the concept of mutational signatures, helping to study mutational processes active within the somatic genome.
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Newell, F. et al. Complex structural rearrangements are present in high-grade dysplastic Barrett’s oesophagus samples. BMC Med. Genomics 12, 31 (2019).
pubmed: 30717762
pmcid: 6360790
doi: 10.1186/s12920-019-0476-9
Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006). Together with Maley et al. (‘The combination …’, Cancer Research, 2004), this paper provides evidence that early genetic instability, rather than individual biomarkers, can be used to predict the risk of progression in a single patient.
pubmed: 16565718
doi: 10.1038/ng1768
Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013). This paper from TCGA alongside Secrier et al. (2016) and Frankell et al. (2019), provides a comprehensive genomic characterization of EAC from the largest patient cohorts to date.
pubmed: 23525077
pmcid: 3678719
doi: 10.1038/ng.2591
Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).
pubmed: 25351503
doi: 10.1038/ncomms6224
Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).
pubmed: 24952744
pmcid: 4116294
doi: 10.1038/ng.3013
Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).
pubmed: 26192918
pmcid: 4552571
doi: 10.1038/ng.3343
Christensen, S. et al. 5-Fluorouracil treatment induces characteristic T > G mutations in human cancer. Nat. Commun. 10, 1–11 (2019).
doi: 10.1038/s41467-019-12594-8
Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Böckler, B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 129 (2018).
pubmed: 30201020
pmcid: 6130095
doi: 10.1186/s13059-018-1509-y
Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018).
pubmed: 30388444
doi: 10.1016/j.cell.2018.10.004
Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local determinants of the mutational landscape of the human genome. Cell 177, 101–114 (2019).
pubmed: 30901533
doi: 10.1016/j.cell.2019.02.051
Bass, A. J. et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).
doi: 10.1038/nature13480
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346
pmcid: 5720395
doi: 10.1016/j.cell.2017.09.042
Stachler, M. D. et al. Detection of mutations in Barrett’s esophagus before progression to high-grade dysplasia or adenocarcinoma. Gastroenterology 155, 156–167 (2018).
pubmed: 29608884
doi: 10.1053/j.gastro.2018.03.047
Ross-Innes, C. S. et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing barrett’s esophagus: a multi-center case–control study. PLoS Med. 12, e1001780 (2015).
pubmed: 25634542
pmcid: 4310596
doi: 10.1371/journal.pmed.1001780
Sottoriva, A. et al. A big bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).
pubmed: 25665006
pmcid: 4575589
doi: 10.1038/ng.3214
Martinez, P. et al. Evolution of Barrett’s esophagus through space and time at single-crypt and whole-biopsy levels. Nat. Commun. 9, 794 (2018).
pubmed: 29476056
pmcid: 5824808
doi: 10.1038/s41467-017-02621-x
Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).
pubmed: 29622466
pmcid: 5966039
doi: 10.1016/j.ccell.2018.03.010
Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 52, 74–83 (2020).
pubmed: 31907488
pmcid: 7100916
doi: 10.1038/s41588-019-0551-3
Saito, T. et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun. 9, 1–11 (2018).
doi: 10.1038/s41467-018-05226-0
Wu, H. et al. Evolution and heterogeneity of non-hereditary colorectal cancer revealed by single-cell exome sequencing. Oncogene 36, 2857–2867 (2017).
pubmed: 27941887
doi: 10.1038/onc.2016.438
Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4394 (2012).
pmcid: 3432726
doi: 10.1158/0008-5472.CAN-11-3893
pubmed: 22751462
Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210.e32 (2020).
pubmed: 33007263
pmcid: 7912537
doi: 10.1016/j.cell.2020.08.006
Jakubek, Y. et al. Genomic landscape established by allelic imbalance in the cancerization field of a normal appearing airway. Cancer Res. 76, 3676–3683 (2016).
pubmed: 27216194
pmcid: 5393446
doi: 10.1158/0008-5472.CAN-15-3064
Conconi, D. et al. Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients. Tumor Biol. 37, 13831–13842 (2016).
doi: 10.1007/s13277-016-5181-0
Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).
doi: 10.1038/nature12625
pubmed: 24048066
Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996).
pubmed: 8692948
pmcid: 38939
doi: 10.1073/pnas.93.14.7081
Barrett, M., Galipeau, P., Sanchez, C., Emond, M. & Reid, B. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 12, 1873–1878 (1996).
pubmed: 8649847
Barrett, M. T. et al. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 13, 1867–1873 (1996).
pubmed: 8934532
Galipeau, P. C., Prevo, L. J., Sanchez, C. A., Longton, G. M. & Reid, B. J. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. JNCI 91, 2087–2095 (1999).
pubmed: 10601379
doi: 10.1093/jnci/91.24.2087
Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 64, 3414–3427 (2004).
pubmed: 15150093
doi: 10.1158/0008-5472.CAN-03-3249
Li, X. et al. Temporal and spatial evolution of somatic chromosomal alterations: a case–cohort study of Barrett’s esophagus. Cancer Prev. Res. 7, 114–127 (2014).
doi: 10.1158/1940-6207.CAPR-13-0289
Levine, D. S., Reid, B. J., Haggitt, R. C., Rubin, C. E. & Rabinovitch, P. S. Correlation of ultrastructural aberrations with dysplasia and flow cytometric abnormalities in Barrett’s epithelium. Gastroenterology 96, 355–367 (1989).
pubmed: 2910757
doi: 10.1016/S0016-5085(89)91559-X
Reid, B. et al. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 102, 1212–1219 (1992).
pubmed: 1551528
doi: 10.1016/0016-5085(92)90758-Q
Reid, B. J. et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol. 96, 2839–2848 (2001). Together with Galipeau et al. (1996), Galipeau et al. (1999) and Reid et al. (2001), this paper provides evidence that early copy number changes occur in BE and confer increased risk of cancer to patients with BE.
pubmed: 11693316
pmcid: 1808263
doi: 10.1111/j.1572-0241.2001.04236.x
Rabinovitch, P. S., Longton, G., Blount, P. L., Levine, D. S. & Reid, B. J. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 96, 3071–3083 (2001).
pubmed: 11721752
pmcid: 1559994
doi: 10.1111/j.1572-0241.2001.05261.x
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
pubmed: 22258609
pmcid: 3367003
doi: 10.1038/nature10762
Curtius, K. et al. A molecular clock infers heterogeneous tissue age among patients with Barrett’s esophagus. PLoS Comput. Biol. 12, e1004919 (2016).
pubmed: 27168458
pmcid: 4864310
doi: 10.1371/journal.pcbi.1004919
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).
pubmed: 21215367
pmcid: 3065307
doi: 10.1016/j.cell.2010.11.055
Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).
pubmed: 27526321
pmcid: 5042845
doi: 10.1038/ng.3641
Bonnington, S. N. & Rutter, M. D. Surveillance of colonic polyps: are we getting it right? World J. Gastroenterol. 22, 1925–1934 (2016).
pubmed: 26877600
pmcid: 4726668
doi: 10.3748/wjg.v22.i6.1925
Cheng, Y.-W. et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin. Cancer Res. 14, 6005–6013 (2008).
pubmed: 18829479
pmcid: 3268558
doi: 10.1158/1078-0432.CCR-08-0216
The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
doi: 10.1038/nature11252
Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).
pubmed: 23622249
pmcid: 3690918
doi: 10.1016/j.cell.2013.03.021
Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).
pubmed: 28899600
pmcid: 5696049
doi: 10.1016/j.tcb.2017.08.005
Killcoyne, S. & Fitzgerald, R. C. Practical early cancer detection: distinguishing stable from unstable genomes in pre-cancerous tissues. Br. J. Cancer 124, 683–685 (2020).
pubmed: 33154569
pmcid: 7884797
doi: 10.1038/s41416-020-01142-7
Shaheen, N. J., Falk, G. W., Iyer, P. G. & Gerson, L. B. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am. J. Gastroenterol. 111, 30–50 (2016).
pubmed: 26526079
doi: 10.1038/ajg.2015.322
Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63, 7–42 (2014).
pubmed: 24165758
doi: 10.1136/gutjnl-2013-305372
Bhat, S. et al. Risk of malignant progression in Barrett’s Esophagus patients: results from a large population-based study. J. Natl. Cancer Inst. 103, 1049–1057 (2011).
pmcid: 3632011
doi: 10.1093/jnci/djr203
pubmed: 21680910
Shaheen, N. J. et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009).
pubmed: 19474425
doi: 10.1056/NEJMoa0808145
Phoa, K. N. et al. Radiofrequency ablation vs endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial. JAMA 311, 1209–1217 (2014).
pubmed: 24668102
doi: 10.1001/jama.2014.2511
Fitzgerald, R. C. et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet 396, 333–344 (2020).
pubmed: 32738955
pmcid: 7408501
doi: 10.1016/S0140-6736(20)31099-0
Davidson, M. et al. Detecting and tracking circulating tumour DNA copy number profiles during first line chemotherapy in oesophagogastric adenocarcinoma. Cancers 11, 736 (2019).
pmcid: 6563045
doi: 10.3390/cancers11050736
Babayan, A. & Pantel, K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Med. 10, 21 (2018).
pubmed: 29558971
pmcid: 5861602
doi: 10.1186/s13073-018-0533-6
van der Wel, M. J. et al. Improved diagnostic stratification of digitised Barrett’s oesophagus biopsies by p53 immunohistochemical staining. Histopathology 72, 1015–1023 (2018).
pubmed: 29314176
doi: 10.1111/his.13462
Hamelin, R. et al. TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology 107, 1012–1018 (1994).
pubmed: 7523212
doi: 10.1016/0016-5085(94)90225-9
Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).
pubmed: 20728210
doi: 10.1016/S0140-6736(10)61121-X
Davelaar, A. L. et al. Aberrant TP53 detected by combining immunohistochemistry and DNA-FISH improves Barrett’s esophagus progression prediction: a prospective follow-up study. Genes Chromosom. Cancer 54, 82–90 (2015).
pubmed: 25284618
doi: 10.1002/gcc.22220
Reid, B. J., Levine, D. S., Longton, G., Blount, P. L. & Rabinovitch, P. S. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am. J. Gastroenterol. 95, 1669–1676 (2000).
pubmed: 10925966
pmcid: 1783835
Hadjinicolaou, A. V. et al. Aneuploidy in targeted endoscopic biopsies outperforms other tissue biomarkers in the prediction of histologic progression of Barrett’s oesophagus: a multi-centre prospective cohort study. Ebiomedicine 56, 102765 (2020).
pubmed: 32460165
pmcid: 7251385
doi: 10.1016/j.ebiom.2020.102765
Li, X. et al. Assessment of esophageal adenocarcinoma risk using somatic chromosome alterations in longitudinal samples in Barrett’s esophagus. Cancer Prev. Res. 8, 845–856 (2015).
doi: 10.1158/1940-6207.CAPR-15-0130
Douville, C. et al. Massively parallel sequencing of esophageal brushings enables an aneuploidy-based classification of patients with Barrett’s esophagus. Gastroenterology 160, 2043–2054 (2021).
pubmed: 33493502
doi: 10.1053/j.gastro.2021.01.209
Vaughan, T. L. & Fitzgerald, R. C. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12, 243–248 (2015).
pubmed: 25666644
pmcid: 4382373
doi: 10.1038/nrgastro.2015.24
Parasa, S. et al. Development and validation of a model to determine risk of progression of Barrett’s esophagus to neoplasia. Gastroenterology 154, 1282–1289.e2 (2018).
pubmed: 29273452
doi: 10.1053/j.gastro.2017.12.009
Hardikar, S. et al. The role of tobacco, alcohol, and obesity in neoplastic progression to esophageal adenocarcinoma: a prospective study of Barrett’s esophagus. PLoS ONE 8, e52192 (2013).
pubmed: 23300966
pmcid: 3536789
doi: 10.1371/journal.pone.0052192
Zagari, R. M. et al. Gastro-oesophageal reflux symptoms, oesophagitis and Barrett’s oesophagus in the general population: the Loiano-Monghidoro study. Gut 57, 1354–1359 (2008).
pubmed: 18424568
doi: 10.1136/gut.2007.145177
Ronkainen, J. et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129, 1825–1831 (2005).
pubmed: 16344051
doi: 10.1053/j.gastro.2005.08.053
Hamade, N. et al. Lower annual rate of progression of short-segment vs long-segment Barrett’s esophagus to esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 17, 864–868 (2019).
pubmed: 30012433
doi: 10.1016/j.cgh.2018.07.008
Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).
pubmed: 27276561
pmcid: 4979995
doi: 10.1056/NEJMoa1516192
Gerstung, M. et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 49, 332–340 (2017).
pubmed: 28092685
pmcid: 5764082
doi: 10.1038/ng.3756
Cook, M. B. et al. Cigarette smoking increases risk of Barrett’s esophagus: an analysis of the Barrett’s and esophageal adenocarcinoma consortium. Gastroenterology 142, 744–753 (2012).
pubmed: 22245667
doi: 10.1053/j.gastro.2011.12.049
Vaughan, T. L., Onstad, L. & Dai, J. Y. Interactive decision support for esophageal adenocarcinoma screening and surveillance. BMC Gastroenterol. 19, 109 (2019).
pubmed: 31248371
pmcid: 6598240
doi: 10.1186/s12876-019-1022-0
Keswani, R. N., Noffsinger, A., Waxman, I. & Bissonnette, M. Clinical use of p53 in Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev. 15, 1243–1249 (2006).
pubmed: 16835318
doi: 10.1158/1055-9965.EPI-06-0010
Jin, Z. et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 69, 4112–4115 (2009).
pubmed: 19435894
pmcid: 2752375
doi: 10.1158/0008-5472.CAN-09-0028
Sato, F. et al. Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PLoS ONE 3, e1890 (2008).
pubmed: 18382671
pmcid: 2270339
doi: 10.1371/journal.pone.0001890
Souza, R. F. Reflux esophagitis and its role in the pathogenesis of Barrett’s metaplasia. J. Gastroenterol. 52, 767–776 (2017).
pubmed: 28451845
pmcid: 5488728
doi: 10.1007/s00535-017-1342-1
Wang, D. H. The esophageal squamous epithelial cell — still a reasonable candidate for the Barrett’s esophagus cell of origin? Cell. Mol. Gastroenterol. Hepatol. 4, 157–160 (2017).
pubmed: 28593187
pmcid: 5453881
doi: 10.1016/j.jcmgh.2017.01.015
Kong, J., Crissey, M. A., Funakoshi, S., Kreindler, J. L. & Lynch, J. P. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS ONE 6, 18280 (2011).
doi: 10.1371/journal.pone.0018280
Clemons, N. J. et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 303, 1335–1346 (2012).
doi: 10.1152/ajpgi.00291.2012
Owen, R. P. et al. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands. Nat. Commun. 9, 4261 (2018).
pubmed: 30323168
pmcid: 6189174
doi: 10.1038/s41467-018-06796-9
Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57, 1041–1048 (2008).
pubmed: 18305067
doi: 10.1136/gut.2007.143339
Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).
pubmed: 29019984
pmcid: 5831195
doi: 10.1038/nature24269
Wang, X. et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145, 1023–1035 (2011).
pubmed: 21703447
pmcid: 3125107
doi: 10.1016/j.cell.2011.05.026
McQuaid, K. R., Laine, L., Fennerty, M. B., Souza, R. & Spechler, S. J. Systematic review: The role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment. Pharmacol. Ther. 34, 146–165 (2011).
pubmed: 21615439
doi: 10.1111/j.1365-2036.2011.04709.x
Gokon, Y. et al. Immune microenvironment in Barrett’s esophagus adjacent to esophageal adenocarcinoma: possible influence of adjacent mucosa on cancer development and progression. Virchows Arch. 477, 825–834 (2020).
pubmed: 32533341
doi: 10.1007/s00428-020-02854-0
Fitzgerald, R. C. et al. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: Immunological determinants. Gut 50, 451–459 (2002).
pubmed: 11889061
pmcid: 1773186
doi: 10.1136/gut.50.4.451
Kavanagh, M. E. et al. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett. 370, 117–124 (2016).
pubmed: 26519754
doi: 10.1016/j.canlet.2015.10.019
Lagisetty, K. H. et al. Immune determinants of Barrett’s progression to esophageal adenocarcinoma. JCI Insight 6, e143888 (2021). This paper provides an overview of the changes within the immune environment between BE and EAC.
pmcid: 7821593
doi: 10.1172/jci.insight.143888
Wagener-Ryczek, S. et al. Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma. Cancer Immunol. Immunother. 69, 523–533 (2020).
pubmed: 31960110
pmcid: 7113210
doi: 10.1007/s00262-019-02475-w
Galipeau, P. C. et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4, e67 (2007).
pubmed: 17326708
pmcid: 1808095
doi: 10.1371/journal.pmed.0040067
Galipeau, P. C. et al. NSAID use and somatic exomic mutations in Barrett’s esophagus. Genome Med. 10, 17 (2018).
pubmed: 29486792
pmcid: 5830331
doi: 10.1186/s13073-018-0520-y
Liao, L. M. et al. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophagogastric junction in a pooled analysis. Gastroenterology 142, 442–452.e5; quiz e22–e23 (2012).
pubmed: 22108196
doi: 10.1053/j.gastro.2011.11.019
Jankowski, J. A. Z. et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet 392, 400–408 (2018). This paper presents AspECT, the largest clinical trial to date investigating the real effect of aspirin and proton-pump inhibitors to delay or inhibit EAC in patients with BE.
pubmed: 30057104
pmcid: 6083438
doi: 10.1016/S0140-6736(18)31388-6