Sex differences in anxiety and depression: circuits and mechanisms.
Journal
Nature reviews. Neuroscience
ISSN: 1471-0048
Titre abrégé: Nat Rev Neurosci
Pays: England
ID NLM: 100962781
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
accepted:
05
08
2021
pubmed:
22
9
2021
medline:
24
11
2021
entrez:
21
9
2021
Statut:
ppublish
Résumé
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Identifiants
pubmed: 34545241
doi: 10.1038/s41583-021-00513-0
pii: 10.1038/s41583-021-00513-0
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
674-684Informations de copyright
© 2021. Springer Nature Limited.
Références
Altemus, M., Sarvaiya, N. & Neill Epperson, C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol. 35, 320–330 (2014).
pubmed: 24887405
pmcid: 4890708
doi: 10.1016/j.yfrne.2014.05.004
Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M. & Wittchen, H. U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res. 21, 169–184 (2012).
pubmed: 22865617
pmcid: 4005415
doi: 10.1002/mpr.1359
SAMHSA. National Survey on Drug Use and Health (NSDUH). US Department of Health & Human Services https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health (2018).
Sramek, J. J., Murphy, M. F. & Cutler, N. R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 18, 447–457 (2016).
pubmed: 28179816
pmcid: 5286730
doi: 10.31887/DCNS.2016.18.4/ncutler
Kornstein, S. G. et al. Gender differences in chronic major and double depression. J. Affect. Disord. 60, 1–11 (2000).
pubmed: 10940442
doi: 10.1016/S0165-0327(99)00158-5
Jalnapurkar, I., Allen, M. & Pigott, T. Sex differences in anxiety disorders: a review. J. Psychiatry Depress. Anxiety 4, 3–16 (2018).
Kornstein, S. G. et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 157, 1445–1452 (2000).
pubmed: 10964861
doi: 10.1176/appi.ajp.157.9.1445
Marcus, S. M. et al. Gender differences in depression: findings from the STAR*D study. J. Affect. Disord. 87, 141–150 (2005).
pubmed: 15982748
doi: 10.1016/j.jad.2004.09.008
Hildebrandt, M. G., Steyerberg, E. W., Stage, K. B., Passchier, J. & Kragh-Soerensen, P. Are gender differences important for the clinical effects of antidepressants? Am. J. Psychiatry 160, 1643–1650 (2003).
pubmed: 12944340
doi: 10.1176/appi.ajp.160.9.1643
Quitkin, F. M. et al. Are there differences between women’s and men’s antidepressant responses? Am. J. Psychiatry 159, 1848–1854 (2002).
pubmed: 12411218
doi: 10.1176/appi.ajp.159.11.1848
Monteggia, L. M., Heimer, H. & Nestler, E. J. Meeting report: can we make animal models of human mental illness? Biol. Psychiatry 84, 542–545 (2018).
pubmed: 29606372
pmcid: 6269650
doi: 10.1016/j.biopsych.2018.02.010
Gururajan, A., Reif, A., Cryan, J. F. & Slattery, D. A. The future of rodent models in depression research. Nat. Rev. Neurosci. 20, 686–701 (2019).
pubmed: 31578460
doi: 10.1038/s41583-019-0221-6
Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).
pubmed: 20620164
doi: 10.1016/j.neubiorev.2010.07.002
Tannenbaum, C., Schwarz, J. M., Clayton, J. A., de Vries, G. J. & Sullivan, C. Evaluating sex as a biological variable in preclinical research: the devil in the details. Biol. Sex. Differ. 7, 13 (2016).
pubmed: 26870316
pmcid: 4750169
doi: 10.1186/s13293-016-0066-x
Mamlouk, G. M., Dorris, D. M., Barrett, L. R. & Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol. 57, 100835 (2020).
pubmed: 32070715
pmcid: 7225067
doi: 10.1016/j.yfrne.2020.100835
Becker, M., Pinhasov, A. & Ornoy, A. Animal models of depression: what can they teach us about the human disease? Diagnostics 11, 123 (2021).
pubmed: 33466814
pmcid: 7830961
doi: 10.3390/diagnostics11010123
Fernandes, C., González, M. I., Wilson, C. A. & File, S. E. Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety. Pharmacol. Biochem. Behav. 64, 731–736 (1999).
pubmed: 10593196
doi: 10.1016/S0091-3057(99)00139-2
Riboni, F. V. & Belzung, C. Stress and psychiatric disorders: from categorical to dimensional approaches. Curr. Opin. Behav. Sci. 14, 72–77 (2017).
doi: 10.1016/j.cobeha.2016.12.011
Melchior, M. et al. Work stress precipitates depression and anxiety in young, working women and men. Psychol. Med. 37, 1119–1129 (2007).
pubmed: 17407618
pmcid: 2062493
doi: 10.1017/S0033291707000414
Newman, S. C. & Bland, R. C. Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr. Psychiatry 35, 76–82 (1994).
pubmed: 8149733
doi: 10.1016/0010-440X(94)90173-2
Hodes, G. E. & Epperson, C. N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry 86, 421–432 (2019).
pubmed: 31221426
doi: 10.1016/j.biopsych.2019.04.028
pmcid: 8630768
Kokras, N., Hodes, G. E., Bangasser, D. A. & Dalla, C. Sex differences in the hypothalamic–pituitary–adrenal axis: an obstacle to antidepressant drug development? Br. J. Pharmacol. 176, 4090–4106 (2019). This review synthesizes details of how antidepressants developed only in male rodents fail clinical testing when females are included in the trials.
pubmed: 31093959
pmcid: 6877794
doi: 10.1111/bph.14710
Bath, K. G. Synthesizing views to understand sex differences in response to early life adversity. Trends Neurosci. 43, 300–310 (2020).
pubmed: 32353334
pmcid: 7195459
doi: 10.1016/j.tins.2020.02.004
Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).
pubmed: 32828189
pmcid: 7440877
doi: 10.1016/S0140-6736(20)31561-0
McCarthy, M. M. Multifaceted origins of sex differences in the brain. Phil. Trans. R. Soc. B 371, 20150106 (2016).
pubmed: 26833829
pmcid: 4785894
doi: 10.1098/rstb.2015.0106
Maney, D. L. Perils and pitfalls of reporting sex differences. Phil. Trans. R. Soc. B 371, 20150119 (2016).
pubmed: 26833839
pmcid: 4785904
doi: 10.1098/rstb.2015.0119
McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D. & De Vries, G. J. Sex differences in the brain: the not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012). This paper is a great primer on how to study sex differences.
pubmed: 22396398
pmcid: 3295598
doi: 10.1523/JNEUROSCI.5372-11.2012
Becker, J. B. & Koob, G. F. Sex differences in animal models: focus on addiction. Pharmacol. Rev. 68, 242–263 (2016).
pubmed: 26772794
pmcid: 4813426
doi: 10.1124/pr.115.011163
De Vries, G. J. Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145, 1063–1068 (2004).
pubmed: 14670982
doi: 10.1210/en.2003-1504
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 5th edn Vol. 5 (American Psychiatric Publishing, 2013).
Ottenbreit, N. D. & Dobson, K. S. Avoidance and depression: the construction of the cognitive–behavioral avoidance scale. Behav. Res. Ther. 42, 293–313 (2004).
pubmed: 14975771
doi: 10.1016/S0005-7967(03)00140-2
Orr, S. P. et al. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J. Abnorm. Psychol. 109, 290–298 (2000).
pubmed: 10895567
doi: 10.1037/0021-843X.109.2.290
Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).
pubmed: 19748076
pmcid: 2787650
doi: 10.1016/j.biopsych.2009.06.026
Donner, N. C. & Lowry, C. A. Sex differences in anxiety and emotional behavior. Pflügers Arch. Eur. J. Physiol. 465, 601–626 (2013).
doi: 10.1007/s00424-013-1271-7
Frye, C. A., Petralia, S. M. & Rhodes, M. E. Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharmacol. Biochem. Behav. 67, 587–596 (2000).
pubmed: 11164090
doi: 10.1016/S0091-3057(00)00392-0
Johnston, A. L. & File, S. E. Sex differences in animal tests of anxiety. Physiol. Behav. 49, 245–250 (1991).
pubmed: 2062894
doi: 10.1016/0031-9384(91)90039-Q
Miller, S. M., Piasecki, C. C. & Lonstein, J. S. Use of the light–dark box to compare the anxiety-related behavior of virgin and postpartum female rats. Pharmacol. Biochem. Behav. 100, 130–137 (2011).
pubmed: 21851834
pmcid: 3183346
doi: 10.1016/j.pbb.2011.08.002
Li, K., Nakajima, M., Ibanez-Tallon, I. & Heintz, N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167, 60–72.e11 (2016). This paper identifies a population of neurons in the PFC that mediate social behaviour in females and anxiety-like behaviour in males.
pubmed: 27641503
pmcid: 5220951
doi: 10.1016/j.cell.2016.08.067
Bredewold, R., Smith, C. J., Dumais, K. M. & Veenema, A. H. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Front. Behav. Neurosci. 8, 216 (2014).
pubmed: 24982623
pmcid: 4058593
doi: 10.3389/fnbeh.2014.00216
de Vries, G. J. in Progress in Brain Research Vol. 170 (eds Neumann Inga, D. & Rainer, L.) 17–27 (Elsevier, 2008).
Rigney, N., Whylings, J., de Vries, G. J. & Petrulis, A. Sex differences in the control of social investigation and anxiety by vasopressin cells of the paraventricular nucleus of the hypothalamus. Neuroendocrinology 111, 521–535 (2021).
pubmed: 32541145
doi: 10.1159/000509421
Nakajima, M., Gorlich, A. & Heintz, N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159, 295–305 (2014).
pubmed: 25303526
pmcid: 4206218
doi: 10.1016/j.cell.2014.09.020
Westphal, N. J. & Seasholtz, A. F. CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Front. Biosci. 11, 1878–1891 (2006).
pubmed: 16368564
doi: 10.2741/1931
Van Den Eede, F., Van Broeckhoven, C. & Claes, S. J. Corticotropin-releasing factor-binding protein, stress and major depression. Ageing Res. Rev. 4, 213–239 (2005).
doi: 10.1016/j.arr.2005.02.002
Jovanovic, T. & Norrholm, S. D. Neural mechanisms of impaired fear inhibition in posttraumatic stress disorder. Front. Behav. Neurosci. 5, 44 (2011).
pubmed: 21845177
pmcid: 3145245
doi: 10.3389/fnbeh.2011.00044
Helpman, L. et al. Neural changes in extinction recall following prolonged exposure treatment for PTSD: a longitudinal fMRI study. NeuroImage Clin. 12, 715–723 (2016).
pubmed: 27761402
pmcid: 5065048
doi: 10.1016/j.nicl.2016.10.007
Hofmann, S. G. Cognitive processes during fear acquisition and extinction in animals and humans: implications for exposure therapy of anxiety disorders. Clin. Psychol. Rev. 28, 199–210 (2008).
pubmed: 17532105
doi: 10.1016/j.cpr.2007.04.009
Shansky, R. M. Sex differences in PTSD resilience and susceptibility: challenges for animal models of fear learning. Neurobiol. Stress 1, 60–65 (2015).
pubmed: 25729759
doi: 10.1016/j.ynstr.2014.09.005
Keiser, A. A. et al. Sex differences in context fear generalization and recruitment of hippocampus and amygdala during retrieval. Neuropsychopharmacology 42, 397–407 (2017).
pubmed: 27577601
doi: 10.1038/npp.2016.174
Ramikie, T. S. & Ressler, K. J. Mechanisms of sex differences in fear and posttraumatic stress disorder. Biol. Psychiatry 83, 876–885 (2018).
pubmed: 29331353
doi: 10.1016/j.biopsych.2017.11.016
Herry, C. & Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).
pubmed: 25413091
doi: 10.1038/nn.3869
Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).
pubmed: 24908482
pmcid: 4103014
doi: 10.1016/j.neuron.2014.04.042
Lopez-Larson, M. P., Anderson, J. S., Ferguson, M. A. & Yurgelun-Todd, D. Local brain connectivity and associations with gender and age. Dev. Cognit. Neurosci. 1, 187–197 (2011).
doi: 10.1016/j.dcn.2010.10.001
Cahill, L., Uncapher, M., Kilpatrick, L., Alkire, M. T. & Turner, J. Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an fMRI investigation. Learn. Mem. 11, 261–266 (2004).
pubmed: 15169855
pmcid: 419728
doi: 10.1101/lm.70504
Colom-Lapetina, J., Li, A. J., Pelegrina-Perez, T. C. & Shansky, R. M. Behavioral diversity across classic rodent models is sex-dependent. Front. Behav. Neurosci. 13, 45 (2019).
pubmed: 30894806
pmcid: 6414415
doi: 10.3389/fnbeh.2019.00045
Gruene, T. M., Flick, K., Stefano, A., Shea, S. D. & Shansky, R. M. Sexually divergent expression of active and passive conditioned fear responses in rats. eLife 4, e11352 (2015). This study demonstrates a sex difference in freezing responses that has implications for interpreting fear conditioning studies in rats.
pubmed: 26568307
pmcid: 4709260
doi: 10.7554/eLife.11352
Bangasser, D. To freeze or not to freeze. eLife 4, e13119 (2015).
pubmed: 26701934
pmcid: 4744195
doi: 10.7554/eLife.13119
Kokras, N. & Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol. 171, 4595–4619 (2014).
pubmed: 24697577
pmcid: 4209934
doi: 10.1111/bph.12710
Morena, M. et al. Sex-dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br. J. Pharmacol. 178, 983–996 (2021).
pubmed: 33314038
doi: 10.1111/bph.15341
Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).
pubmed: 10440374
doi: 10.1038/22761
Gunduz-Cinar, O. et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 18, 813–823 (2013).
pubmed: 22688188
doi: 10.1038/mp.2012.72
Llorente-Berzal, A. et al. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology 232, 2811–2825 (2015).
pubmed: 25814137
doi: 10.1007/s00213-015-3917-y
Neumeister, A. et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18, 1034–1040 (2013).
pubmed: 23670490
pmcid: 3752332
doi: 10.1038/mp.2013.61
Lebron-Milad, K. & Milad, M. R. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol. Mood Anxiety Disord. 2, 3 (2012).
pubmed: 22738383
pmcid: 3384233
doi: 10.1186/2045-5380-2-3
Milad, M. R., Igoe, S. A., Lebron-Milad, K. & Novales, J. E. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 164, 887–895 (2009).
pubmed: 19761818
doi: 10.1016/j.neuroscience.2009.09.011
Baran, S. E., Armstrong, C. E., Niren, D. C., Hanna, J. J. & Conrad, C. D. Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol. Learn. Mem. 91, 323–332 (2009).
pubmed: 19073269
pmcid: 2673234
doi: 10.1016/j.nlm.2008.11.005
Hwang, M. J. et al. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction. BMC Psychiatry 15, 295 (2015). This paper demonstrates a role for ovarian hormones in regulating fear extinction.
pubmed: 26581193
pmcid: 4652367
doi: 10.1186/s12888-015-0673-9
Rey, C. D., Lipps, J. & Shansky, R. M. Dopamine D1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal–amygdala circuits. Neuropsychopharmacology 39, 1282–1289 (2014).
pubmed: 24343528
pmcid: 3957124
doi: 10.1038/npp.2013.338
Shansky, R. M. Are hormones a “female problem” for animal research? Science 364, 825–826 (2019).
pubmed: 31147505
doi: 10.1126/science.aaw7570
Peters, L., Issakidis, C., Slade, T. I. M. & Andrews, G. Gender differences in the prevalence of DSM-IV and ICD-10 PTSD. Psychol. Med. 36, 81–89 (2005).
doi: 10.1017/S003329170500591X
Plante, D. T. et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatry 12, 146 (2012).
pubmed: 22989072
pmcid: 3507703
doi: 10.1186/1471-244X-12-146
Kobayashi, I. & Mellman, T. A. Gender differences in sleep during the aftermath of trauma and the development of posttraumatic stress disorder. Behav. Sleep Med. 10, 180–190 (2012).
pubmed: 22742436
pmcid: 3947587
doi: 10.1080/15402002.2011.654296
Murphy, S., Elklit, A., Chen, Y. Y., Ghazali, S. R. & Shevlin, M. Sex differences in PTSD symptoms: a differential item functioning approach. Psychol. Trauma 11, 319–327 (2019).
pubmed: 29723027
doi: 10.1037/tra0000355
Nolen-Hoeksema, S., Larson, J. & Grayson, C. Explaining the gender difference in depressive symptoms. J. Pers. Soc. Psychol. 77, 1061–1072 (1999).
pubmed: 10573880
doi: 10.1037/0022-3514.77.5.1061
Nemeroff, C. B., Bissette, G., Akil, H. & Fink, M. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, β-endorphin and somatostatin. Br. J. Psychiatry 158, 59–63 (1991).
pubmed: 1673078
doi: 10.1192/bjp.158.1.59
Heuser, I. et al. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress. Anxiety 8, 71–79 (1998).
pubmed: 9784981
doi: 10.1002/(SICI)1520-6394(1998)8:2<71::AID-DA5>3.0.CO;2-N
Bremner, J. D. et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry 154, 624–629 (1997).
pubmed: 9137116
pmcid: 3233756
doi: 10.1176/ajp.154.5.624
Baker, D. G. et al. Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 162, 992–994 (2005).
pubmed: 15863803
doi: 10.1176/appi.ajp.162.5.992
Wang, S. S., Kamphuis, W., Huitinga, I., Zhou, J. N. & Swaab, D. F. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol. Psychiatry 13, 786–799 (2008).
pubmed: 18427561
doi: 10.1038/mp.2008.38
Valentino, R. J. & Van Bockstaele, E. J. in Hormones, Brain and Behavior Vol. 4 (eds Arnold, A. et al.) 81–102 (Academic, 2002).
Valentino, R. J., Foote, S. L. & Page, M. E. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann. N. Y. Acad. Sci. 697, 173–188 (1993).
pubmed: 7903030
doi: 10.1111/j.1749-6632.1993.tb49931.x
Szabadi, E. Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 27, 659–693 (2013).
pubmed: 23761387
doi: 10.1177/0269881113490326
Aston-Jones, G. in The Rat Nervous System 3rd edn 259–294 (Academic, 2004).
Berridge, C. W. & Waterhouse, B. D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).
pubmed: 12668290
doi: 10.1016/S0165-0173(03)00143-7
Berridge, C. W., Page, M. E., Valentino, R. J. & Foote, S. L. Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55, 381–383 (1993).
pubmed: 8104319
doi: 10.1016/0306-4522(93)90507-C
Page, M. E., Berridge, C. W., Foote, S. L. & Valentino, R. J. Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neurosci. Lett. 164, 81–84 (1993).
pubmed: 8152620
doi: 10.1016/0304-3940(93)90862-F
Curtis, A. L., Grigoriadis, D. E., Page, M. E., Rivier, J. & Valentino, R. J. Pharmacological comparison of two corticotropin-releasing factor antagonists: in vivo and in vitro studies. J. Pharmacol. Exp. Ther. 268, 359–365 (1994).
pubmed: 8301577
Curtis, A. L., Lechner, S. M., Pavcovich, L. A. & Valentino, R. J. Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J. Pharmacol. Exp. Ther. 281, 163–172 (1997).
pubmed: 9103494
Lechner, S. M., Curtis, A. L., Brons, R. & Valentino, R. J. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res. 756, 114–124 (1997).
pubmed: 9187321
doi: 10.1016/S0006-8993(97)00116-9
Valentino, R. J., Curtis, A. L., Page, M. E., Pavcovich, L. A. & Florin-Lechner, S. M. Activation of the locus ceruleus brain noradrenergic system during stress: circuitry, consequences, and regulation. Adv. Pharmacol. 42, 781–784 (1998).
pubmed: 9328014
doi: 10.1016/S1054-3589(08)60863-7
Curtis, A. L., Bethea, T. & Valentino, R. J. Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 31, 544–554 (2006).
pubmed: 16123744
doi: 10.1038/sj.npp.1300875
Bangasser, D. A. et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 15, 896–904 (2010). This paper finds that a receptor that mediates a stress neuropeptide signals differently in males versus females.
doi: 10.1038/mp.2010.66
Valentino, R. J., Page, M. E. & Curtis, A. L. Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res. 555, 25–34 (1991).
pubmed: 1933327
doi: 10.1016/0006-8993(91)90855-P
Jedema, H. P. & Grace, A. A. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J. Neurosci. 24, 9703–9713 (2004).
pubmed: 15509759
pmcid: 6730164
doi: 10.1523/JNEUROSCI.2830-04.2004
Stenzel-Poore, M. P., Heinrichs, S. C., Rivest, S., Koob, G. F. & Vale, W. W. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J. Neurosci. 14, 2579–2584 (1994).
pubmed: 8182429
pmcid: 6577466
doi: 10.1523/JNEUROSCI.14-05-02579.1994
Bangasser, D. A. et al. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Mol. Psychiatry 22, 1126–1133 (2017).
pubmed: 27752081
doi: 10.1038/mp.2016.185
Violin, J. D. & Lefkowitz, R. J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).
pubmed: 17644195
doi: 10.1016/j.tips.2007.06.006
Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).
pubmed: 15845844
doi: 10.1126/science.1109237
Valentino, R. J. & Bangasser, D. A. Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. Dialogues Clin. Neurosci. 18, 385–393 (2016).
pubmed: 28179810
pmcid: 5286724
doi: 10.31887/DCNS.2016.18.4/rvalentino
Valentino, R. J., Bangasser, D. & Van Bockstaele, E. J. Sex-biased stress signaling: the corticotropin-releasing factor receptor as a model. Mol. Pharmacol. 83, 737–745 (2013).
pubmed: 23239826
pmcid: 3608440
doi: 10.1124/mol.112.083550
Bangasser, D. A., Eck, S. R., Telenson, A. M. & Salvatore, M. Sex differences in stress regulation of arousal and cognition. Physiol. Behav. 187, 42–50 (2018).
pubmed: 28974457
doi: 10.1016/j.physbeh.2017.09.025
Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998).
pubmed: 9597157
doi: 10.1146/annurev.pharmtox.38.1.289
Reyes, B. A., Valentino, R. J. & Van Bockstaele, E. J. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 149, 122–130 (2008).
pubmed: 17947354
doi: 10.1210/en.2007-0705
Bangasser, D. A. et al. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol. Psychiatry 18, 166–173 (2013).
pubmed: 22508464
doi: 10.1038/mp.2012.24
Murrough, J. W. & Charney, D. S. Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: time to call it quits? Biol. Psychiatry 82, 858–860 (2017).
pubmed: 29129198
doi: 10.1016/j.biopsych.2017.10.012
Ising, M. et al. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32, 1941–1949 (2007).
pubmed: 17287823
doi: 10.1038/sj.npp.1301328
Valentino, R. J., Van Bockstaele, E. & Bangasser, D. Sex-specific cell signaling: the corticotropin-releasing factor receptor model. Trends Pharmacol. Sci. 34, 437–444 (2013).
pubmed: 23849813
pmcid: 3752157
doi: 10.1016/j.tips.2013.06.004
Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).
pubmed: 29302067
pmcid: 5936084
doi: 10.1038/nrd.2017.229
Seidel, E.-M. et al. Implicit and explicit behavioral tendencies in male and female depression. Psychiatry Res. 177, 124–130 (2010).
pubmed: 20199811
doi: 10.1016/j.psychres.2010.02.001
Asher, M., Asnaani, A. & Aderka, I. M. Gender differences in social anxiety disorder: a review. Clin. Psychol. Rev. 56, 1–12 (2017).
pubmed: 28578248
doi: 10.1016/j.cpr.2017.05.004
Heimberg, R. G. Social Phobia: Diagnosis, Assessment, and Treatment (Guilford Press, 1995).
Newman, E. L. et al. Fighting females: neural and behavioral consequences of social defeat stress in female mice. Biol. Psychiatry 86, 657–668 (2019).
pubmed: 31255250
pmcid: 6788975
doi: 10.1016/j.biopsych.2019.05.005
Silva, A. L., Fry, W. H. D., Sweeney, C. & Trainor, B. C. Effects of photoperiod and experience on aggressive behavior in female California mice. Behav. Brain Res. 208, 528–534 (2010).
pubmed: 20060017
pmcid: 2831116
doi: 10.1016/j.bbr.2009.12.038
Trainor, B. C. et al. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding. Horm. Behav. 63, 543–550 (2013).
pubmed: 23384773
pmcid: 3637973
doi: 10.1016/j.yhbeh.2013.01.011
Beery, A. K. Antisocial oxytocin: complex effects on social behavior. Curr. Opin. Behav. Sci. 6, 174–182 (2015).
doi: 10.1016/j.cobeha.2015.11.006
Shamay-Tsoory, S. G. & Abu-Akel, A. The social salience hypothesis of oxytocin. Biol. Psychiatry 79, 194–202 (2016).
pubmed: 26321019
doi: 10.1016/j.biopsych.2015.07.020
Steinman, M. Q. et al. Sex-specific effects of stress on oxytocin neurons correspond with responses to intranasal oxytocin. Biol. Psychiatry 80, 406–414 (2016).
pubmed: 26620251
doi: 10.1016/j.biopsych.2015.10.007
Duque-Wilckens, N. et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc. Natl Acad. Sci. USA 117, 26406–26413 (2020). This paper demonstrates that oxytocin synthesis within the BNST is necessary for stress-induced disruptions in social approach and vigilance.
pubmed: 33020267
pmcid: 7585015
doi: 10.1073/pnas.2011890117
Duque-Wilckens, N. et al. Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female california mice. Biol. Psychiatry 83, 203–213 (2018).
pubmed: 29066224
doi: 10.1016/j.biopsych.2017.08.024
Lukas, M. et al. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 36, 2159–2168 (2011).
pubmed: 21677650
pmcid: 3176581
doi: 10.1038/npp.2011.95
Kubzansky, L. D., Mendes, W. B., Appleton, A. A., Block, J. & Adler, G. K. A heartfelt response: oxytocin effects on response to social stress in men and women. Biol. Psychol. 90, 1–9 (2012).
pubmed: 22387929
pmcid: 3327158
doi: 10.1016/j.biopsycho.2012.02.010
Holt-Lunstad, J., Birmingham, W. & Light, K. C. The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology 36, 1249–1256 (2011).
pubmed: 21507578
doi: 10.1016/j.psyneuen.2011.03.007
Cyranowski, J. M. et al. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med. 70, 967–975 (2008).
pubmed: 19005082
pmcid: 3397424
doi: 10.1097/PSY.0b013e318188ade4
Maier, S. F. & Seligman, M. E. P. Learned helplessness at fifty: insights from neuroscience. Psychol. Rev. 123, 349–367 (2016).
pubmed: 27337390
pmcid: 4920136
doi: 10.1037/rev0000033
Maier, S. F. & Watkins, L. R. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841 (2005).
pubmed: 15893820
doi: 10.1016/j.neubiorev.2005.03.021
Maier, S. F. Behavioral control blunts reactions to contemporaneous and future adverse events: medial prefrontal cortex plasticity and a corticostriatal network. Neurobiol. Stress. 1, 12–22 (2015).
pubmed: 25506602
doi: 10.1016/j.ynstr.2014.09.003
Dalla, C., Edgecomb, C., Whetstone, A. S. & Shors, T. J. Females do not express learned helplessness like males do. Neuropsychopharmacology 33, 1559–1569 (2008).
pubmed: 17712351
doi: 10.1038/sj.npp.1301533
Baratta, M. V. et al. Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males, but not females. Brain Struct. Funct. 224, 1831–1843 (2019).
pubmed: 31028464
pmcid: 6565440
doi: 10.1007/s00429-019-01875-z
Baratta, M. V. et al. Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. Eur. J. Neurosci. 47, 959–967 (2018).
pubmed: 29359831
pmcid: 5902414
doi: 10.1111/ejn.13833
Whitton, A. E., Treadway, M. T. & Pizzagalli, D. A. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr. Opin. Psychiatry 28, 7–12 (2015).
pubmed: 25415499
pmcid: 4277233
doi: 10.1097/YCO.0000000000000122
Treadway, M. T. & Zald, D. H. Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Curr. Dir. Psychol. Sci. 22, 244–249 (2013).
pubmed: 24748727
pmcid: 3989147
doi: 10.1177/0963721412474460
Francis, T. C. & Lobo, M. K. Emerging role for nucleus accumbens medium spiny neuron subtypes in depression. Biol. Psychiatry 81, 645–653 (2017).
pubmed: 27871668
doi: 10.1016/j.biopsych.2016.09.007
Wacker, J., Dillon, D. G. & Pizzagalli, D. A. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. NeuroImage 46, 327–337 (2009).
pubmed: 19457367
doi: 10.1016/j.neuroimage.2009.01.058
Hodes, G. E. et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 35, 16362–16376 (2015). This paper identifies an epigenetic change that contributes to female vulnerability to chronic stressor exposure.
pubmed: 26674863
pmcid: 4679819
doi: 10.1523/JNEUROSCI.1392-15.2015
Williams, E. S. et al. Androgen-dependent excitability of mouse ventral hippocampal afferents to nucleus accumbens underlies sex-specific susceptibility to stress. Biol. Psychiatry 87, 492–501 (2020). This paper delineates a circuit that underlies female vulnerability to stress-induced anhedonia and links male resilience to androgens.
pubmed: 31601425
doi: 10.1016/j.biopsych.2019.08.006
Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).
pubmed: 28825715
pmcid: 5734943
doi: 10.1038/nm.4386
Rincón-Cortés, M. & Grace, A. A. Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int. J. Neuropsychopharmacol. 20, 823–832 (2017).
pubmed: 28591782
pmcid: 5632304
doi: 10.1093/ijnp/pyx048
Holly, E. N., Shimamoto, A., Debold, J. F. & Miczek, K. A. Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacology 224, 179–188 (2012).
pubmed: 22926005
pmcid: 3684960
doi: 10.1007/s00213-012-2846-2
Dalla, C. et al. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav. 93, 595–605 (2008).
pubmed: 18031771
doi: 10.1016/j.physbeh.2007.10.020
Brancato, A. et al. Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience 350, 180–189 (2017).
pubmed: 28323008
doi: 10.1016/j.neuroscience.2017.03.014
Muir, J. et al. Ventral hippocampal afferents to nucleus accumbens encode both latent vulnerability and stress-induced susceptibility. Biol. Psychiatry 88, 843–854 (2020).
pubmed: 32682566
doi: 10.1016/j.biopsych.2020.05.021
Shansky, R. M. & Murphy, A. Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci. 24, 457–464 (2021).
pubmed: 33649507
doi: 10.1038/s41593-021-00806-8
Campbell, E. J. & Marchant, N. J. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br. J. Pharmacol. 175, 994–1003 (2018).
pubmed: 29338070
pmcid: 5843707
doi: 10.1111/bph.14146
Spiller, C., Koopman, P. & Bowles, J. Sex determination in the mammalian germline. Annu. Rev. Genet. 51, 265–285 (2017).
pubmed: 28853925
doi: 10.1146/annurev-genet-120215-035449
Disteche, C. M. Dosage compensation of the sex chromosomes and autosomes. Semin. Cell Dev. Biol. 56, 9–18 (2016).
pubmed: 27112542
pmcid: 4955796
doi: 10.1016/j.semcdb.2016.04.013
Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).
pubmed: 29022598
pmcid: 5685192
doi: 10.1038/nature24265
Migeon, B. R. The role of X inactivation and cellular mosaicism in women’s health and sex-specific diseases. JAMA 295, 1428–1433 (2006).
pubmed: 16551715
doi: 10.1001/jama.295.12.1428
Corre, C. et al. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct. Funct. 221, 997–1016 (2016).
pubmed: 25445841
doi: 10.1007/s00429-014-0952-0
Vousden, D. A. et al. Impact of X/Y genes and sex hormones on mouse neuroanatomy. NeuroImage 173, 551–563 (2018).
pubmed: 29501873
doi: 10.1016/j.neuroimage.2018.02.051
Seney, M. L., Ekong, K. I., Ding, Y., Tseng, G. C. & Sibille, E. Sex chromosome complement regulates expression of mood-related genes. Biol. Sex. Differ. 4, 20 (2013).
pubmed: 24199867
pmcid: 4175487
doi: 10.1186/2042-6410-4-20
Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).
pubmed: 15452574
doi: 10.1038/nn1325
Schulz, K. M., Molenda-Figueira, H. A. & Sisk, C. L. Back to the future: the organizational–activational hypothesis adapted to puberty and adolescence. Horm. Behav. 55, 597–604 (2009).
pubmed: 19446076
pmcid: 2720102
doi: 10.1016/j.yhbeh.2009.03.010
Jain, A., Huang, G. Z. & Woolley, C. S. Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus. J. Neurosci. 39, 1552–1565 (2019).
pubmed: 30578341
pmcid: 6391563
Paelecke-Habermann, Y., Pohl, J. & Leplow, B. Attention and executive functions in remitted major depression patients. J. Affect. Disord. 89, 125–135 (2005).
pubmed: 16324752
doi: 10.1016/j.jad.2005.09.006
Eck, S. R. et al. Stress regulation of sustained attention and the cholinergic attention system. Biol. Psychiatry 88, 566–575 (2020).
pubmed: 32600739
pmcid: 7487022
doi: 10.1016/j.biopsych.2020.04.013
Seney, M. L. et al. Opposite molecular signatures of depression in men and women. Biol. Psychiatry 84, 18–27 (2018).
pubmed: 29548746
pmcid: 6014892
doi: 10.1016/j.biopsych.2018.01.017
Seney, M. L., Glausier, J. & Sibille, E. Large-scale transcriptomics studies provide insight into sex differences in depression. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.12.025 (2021).
doi: 10.1016/j.biopsych.2020.12.025
pubmed: 34380600
pmcid: 8263802
Bollinger, J. L., Bergeon Burns, C. M. & Wellman, C. L. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav. Immun. 52, 88–97 (2016).
pubmed: 26441134
doi: 10.1016/j.bbi.2015.10.003
Torres-Platas, S. G., Cruceanu, C., Chen, G. G., Turecki, G. & Mechawar, N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 42, 50–59 (2014).
pubmed: 24858659
doi: 10.1016/j.bbi.2014.05.007
Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012).
pubmed: 22885997
pmcid: 3491115
doi: 10.1038/nm.2886
Garrett, J. E. & Wellman, C. L. Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162, 195–207 (2009).
pubmed: 19401219
doi: 10.1016/j.neuroscience.2009.04.057
Baratta, M. V. et al. Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear. Neuroscience 146, 1495–1503 (2007).
pubmed: 17478046
doi: 10.1016/j.neuroscience.2007.03.042
Christianson, J. P. et al. The role of prior stressor controllability and the dorsal raphé nucleus in sucrose preference and social exploration. Behav. Brain Res. 193, 87–93 (2008).
pubmed: 18554730
pmcid: 2583404
doi: 10.1016/j.bbr.2008.04.024
Amat, J., Paul, E., Zarza, C., Watkins, L. R. & Maier, S. F. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26, 13264–13272 (2006).
pubmed: 17182776
pmcid: 6675012
doi: 10.1523/JNEUROSCI.3630-06.2006
Valentino, R. J., Reyes, B., Van Bockstaele, E. & Bangasser, D. Molecular and cellular sex differences at the intersection of stress and arousal. Neuropharmacology 62, 13–20 (2012).
pubmed: 21712048
doi: 10.1016/j.neuropharm.2011.06.004