Sex differences in anxiety and depression: circuits and mechanisms.


Journal

Nature reviews. Neuroscience
ISSN: 1471-0048
Titre abrégé: Nat Rev Neurosci
Pays: England
ID NLM: 100962781

Informations de publication

Date de publication:
11 2021
Historique:
accepted: 05 08 2021
pubmed: 22 9 2021
medline: 24 11 2021
entrez: 21 9 2021
Statut: ppublish

Résumé

Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.

Identifiants

pubmed: 34545241
doi: 10.1038/s41583-021-00513-0
pii: 10.1038/s41583-021-00513-0
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

674-684

Informations de copyright

© 2021. Springer Nature Limited.

Références

Altemus, M., Sarvaiya, N. & Neill Epperson, C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol. 35, 320–330 (2014).
pubmed: 24887405 pmcid: 4890708 doi: 10.1016/j.yfrne.2014.05.004
Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M. & Wittchen, H. U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res. 21, 169–184 (2012).
pubmed: 22865617 pmcid: 4005415 doi: 10.1002/mpr.1359
SAMHSA. National Survey on Drug Use and Health (NSDUH). US Department of Health & Human Services https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health (2018).
Sramek, J. J., Murphy, M. F. & Cutler, N. R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 18, 447–457 (2016).
pubmed: 28179816 pmcid: 5286730 doi: 10.31887/DCNS.2016.18.4/ncutler
Kornstein, S. G. et al. Gender differences in chronic major and double depression. J. Affect. Disord. 60, 1–11 (2000).
pubmed: 10940442 doi: 10.1016/S0165-0327(99)00158-5
Jalnapurkar, I., Allen, M. & Pigott, T. Sex differences in anxiety disorders: a review. J. Psychiatry Depress. Anxiety 4, 3–16 (2018).
Kornstein, S. G. et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 157, 1445–1452 (2000).
pubmed: 10964861 doi: 10.1176/appi.ajp.157.9.1445
Marcus, S. M. et al. Gender differences in depression: findings from the STAR*D study. J. Affect. Disord. 87, 141–150 (2005).
pubmed: 15982748 doi: 10.1016/j.jad.2004.09.008
Hildebrandt, M. G., Steyerberg, E. W., Stage, K. B., Passchier, J. & Kragh-Soerensen, P. Are gender differences important for the clinical effects of antidepressants? Am. J. Psychiatry 160, 1643–1650 (2003).
pubmed: 12944340 doi: 10.1176/appi.ajp.160.9.1643
Quitkin, F. M. et al. Are there differences between women’s and men’s antidepressant responses? Am. J. Psychiatry 159, 1848–1854 (2002).
pubmed: 12411218 doi: 10.1176/appi.ajp.159.11.1848
Monteggia, L. M., Heimer, H. & Nestler, E. J. Meeting report: can we make animal models of human mental illness? Biol. Psychiatry 84, 542–545 (2018).
pubmed: 29606372 pmcid: 6269650 doi: 10.1016/j.biopsych.2018.02.010
Gururajan, A., Reif, A., Cryan, J. F. & Slattery, D. A. The future of rodent models in depression research. Nat. Rev. Neurosci. 20, 686–701 (2019).
pubmed: 31578460 doi: 10.1038/s41583-019-0221-6
Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).
pubmed: 20620164 doi: 10.1016/j.neubiorev.2010.07.002
Tannenbaum, C., Schwarz, J. M., Clayton, J. A., de Vries, G. J. & Sullivan, C. Evaluating sex as a biological variable in preclinical research: the devil in the details. Biol. Sex. Differ. 7, 13 (2016).
pubmed: 26870316 pmcid: 4750169 doi: 10.1186/s13293-016-0066-x
Mamlouk, G. M., Dorris, D. M., Barrett, L. R. & Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol. 57, 100835 (2020).
pubmed: 32070715 pmcid: 7225067 doi: 10.1016/j.yfrne.2020.100835
Becker, M., Pinhasov, A. & Ornoy, A. Animal models of depression: what can they teach us about the human disease? Diagnostics 11, 123 (2021).
pubmed: 33466814 pmcid: 7830961 doi: 10.3390/diagnostics11010123
Fernandes, C., González, M. I., Wilson, C. A. & File, S. E. Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety. Pharmacol. Biochem. Behav. 64, 731–736 (1999).
pubmed: 10593196 doi: 10.1016/S0091-3057(99)00139-2
Riboni, F. V. & Belzung, C. Stress and psychiatric disorders: from categorical to dimensional approaches. Curr. Opin. Behav. Sci. 14, 72–77 (2017).
doi: 10.1016/j.cobeha.2016.12.011
Melchior, M. et al. Work stress precipitates depression and anxiety in young, working women and men. Psychol. Med. 37, 1119–1129 (2007).
pubmed: 17407618 pmcid: 2062493 doi: 10.1017/S0033291707000414
Newman, S. C. & Bland, R. C. Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr. Psychiatry 35, 76–82 (1994).
pubmed: 8149733 doi: 10.1016/0010-440X(94)90173-2
Hodes, G. E. & Epperson, C. N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry 86, 421–432 (2019).
pubmed: 31221426 doi: 10.1016/j.biopsych.2019.04.028 pmcid: 8630768
Kokras, N., Hodes, G. E., Bangasser, D. A. & Dalla, C. Sex differences in the hypothalamic–pituitary–adrenal axis: an obstacle to antidepressant drug development? Br. J. Pharmacol. 176, 4090–4106 (2019). This review synthesizes details of how antidepressants developed only in male rodents fail clinical testing when females are included in the trials.
pubmed: 31093959 pmcid: 6877794 doi: 10.1111/bph.14710
Bath, K. G. Synthesizing views to understand sex differences in response to early life adversity. Trends Neurosci. 43, 300–310 (2020).
pubmed: 32353334 pmcid: 7195459 doi: 10.1016/j.tins.2020.02.004
Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).
pubmed: 32828189 pmcid: 7440877 doi: 10.1016/S0140-6736(20)31561-0
McCarthy, M. M. Multifaceted origins of sex differences in the brain. Phil. Trans. R. Soc. B 371, 20150106 (2016).
pubmed: 26833829 pmcid: 4785894 doi: 10.1098/rstb.2015.0106
Maney, D. L. Perils and pitfalls of reporting sex differences. Phil. Trans. R. Soc. B 371, 20150119 (2016).
pubmed: 26833839 pmcid: 4785904 doi: 10.1098/rstb.2015.0119
McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D. & De Vries, G. J. Sex differences in the brain: the not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012). This paper is a great primer on how to study sex differences.
pubmed: 22396398 pmcid: 3295598 doi: 10.1523/JNEUROSCI.5372-11.2012
Becker, J. B. & Koob, G. F. Sex differences in animal models: focus on addiction. Pharmacol. Rev. 68, 242–263 (2016).
pubmed: 26772794 pmcid: 4813426 doi: 10.1124/pr.115.011163
De Vries, G. J. Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145, 1063–1068 (2004).
pubmed: 14670982 doi: 10.1210/en.2003-1504
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 5th edn Vol. 5 (American Psychiatric Publishing, 2013).
Ottenbreit, N. D. & Dobson, K. S. Avoidance and depression: the construction of the cognitive–behavioral avoidance scale. Behav. Res. Ther. 42, 293–313 (2004).
pubmed: 14975771 doi: 10.1016/S0005-7967(03)00140-2
Orr, S. P. et al. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J. Abnorm. Psychol. 109, 290–298 (2000).
pubmed: 10895567 doi: 10.1037/0021-843X.109.2.290
Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).
pubmed: 19748076 pmcid: 2787650 doi: 10.1016/j.biopsych.2009.06.026
Donner, N. C. & Lowry, C. A. Sex differences in anxiety and emotional behavior. Pflügers Arch. Eur. J. Physiol. 465, 601–626 (2013).
doi: 10.1007/s00424-013-1271-7
Frye, C. A., Petralia, S. M. & Rhodes, M. E. Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharmacol. Biochem. Behav. 67, 587–596 (2000).
pubmed: 11164090 doi: 10.1016/S0091-3057(00)00392-0
Johnston, A. L. & File, S. E. Sex differences in animal tests of anxiety. Physiol. Behav. 49, 245–250 (1991).
pubmed: 2062894 doi: 10.1016/0031-9384(91)90039-Q
Miller, S. M., Piasecki, C. C. & Lonstein, J. S. Use of the light–dark box to compare the anxiety-related behavior of virgin and postpartum female rats. Pharmacol. Biochem. Behav. 100, 130–137 (2011).
pubmed: 21851834 pmcid: 3183346 doi: 10.1016/j.pbb.2011.08.002
Li, K., Nakajima, M., Ibanez-Tallon, I. & Heintz, N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167, 60–72.e11 (2016). This paper identifies a population of neurons in the PFC that mediate social behaviour in females and anxiety-like behaviour in males.
pubmed: 27641503 pmcid: 5220951 doi: 10.1016/j.cell.2016.08.067
Bredewold, R., Smith, C. J., Dumais, K. M. & Veenema, A. H. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Front. Behav. Neurosci. 8, 216 (2014).
pubmed: 24982623 pmcid: 4058593 doi: 10.3389/fnbeh.2014.00216
de Vries, G. J. in Progress in Brain Research Vol. 170 (eds Neumann Inga, D. & Rainer, L.) 17–27 (Elsevier, 2008).
Rigney, N., Whylings, J., de Vries, G. J. & Petrulis, A. Sex differences in the control of social investigation and anxiety by vasopressin cells of the paraventricular nucleus of the hypothalamus. Neuroendocrinology 111, 521–535 (2021).
pubmed: 32541145 doi: 10.1159/000509421
Nakajima, M., Gorlich, A. & Heintz, N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159, 295–305 (2014).
pubmed: 25303526 pmcid: 4206218 doi: 10.1016/j.cell.2014.09.020
Westphal, N. J. & Seasholtz, A. F. CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Front. Biosci. 11, 1878–1891 (2006).
pubmed: 16368564 doi: 10.2741/1931
Van Den Eede, F., Van Broeckhoven, C. & Claes, S. J. Corticotropin-releasing factor-binding protein, stress and major depression. Ageing Res. Rev. 4, 213–239 (2005).
doi: 10.1016/j.arr.2005.02.002
Jovanovic, T. & Norrholm, S. D. Neural mechanisms of impaired fear inhibition in posttraumatic stress disorder. Front. Behav. Neurosci. 5, 44 (2011).
pubmed: 21845177 pmcid: 3145245 doi: 10.3389/fnbeh.2011.00044
Helpman, L. et al. Neural changes in extinction recall following prolonged exposure treatment for PTSD: a longitudinal fMRI study. NeuroImage Clin. 12, 715–723 (2016).
pubmed: 27761402 pmcid: 5065048 doi: 10.1016/j.nicl.2016.10.007
Hofmann, S. G. Cognitive processes during fear acquisition and extinction in animals and humans: implications for exposure therapy of anxiety disorders. Clin. Psychol. Rev. 28, 199–210 (2008).
pubmed: 17532105 doi: 10.1016/j.cpr.2007.04.009
Shansky, R. M. Sex differences in PTSD resilience and susceptibility: challenges for animal models of fear learning. Neurobiol. Stress 1, 60–65 (2015).
pubmed: 25729759 doi: 10.1016/j.ynstr.2014.09.005
Keiser, A. A. et al. Sex differences in context fear generalization and recruitment of hippocampus and amygdala during retrieval. Neuropsychopharmacology 42, 397–407 (2017).
pubmed: 27577601 doi: 10.1038/npp.2016.174
Ramikie, T. S. & Ressler, K. J. Mechanisms of sex differences in fear and posttraumatic stress disorder. Biol. Psychiatry 83, 876–885 (2018).
pubmed: 29331353 doi: 10.1016/j.biopsych.2017.11.016
Herry, C. & Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).
pubmed: 25413091 doi: 10.1038/nn.3869
Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).
pubmed: 24908482 pmcid: 4103014 doi: 10.1016/j.neuron.2014.04.042
Lopez-Larson, M. P., Anderson, J. S., Ferguson, M. A. & Yurgelun-Todd, D. Local brain connectivity and associations with gender and age. Dev. Cognit. Neurosci. 1, 187–197 (2011).
doi: 10.1016/j.dcn.2010.10.001
Cahill, L., Uncapher, M., Kilpatrick, L., Alkire, M. T. & Turner, J. Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an fMRI investigation. Learn. Mem. 11, 261–266 (2004).
pubmed: 15169855 pmcid: 419728 doi: 10.1101/lm.70504
Colom-Lapetina, J., Li, A. J., Pelegrina-Perez, T. C. & Shansky, R. M. Behavioral diversity across classic rodent models is sex-dependent. Front. Behav. Neurosci. 13, 45 (2019).
pubmed: 30894806 pmcid: 6414415 doi: 10.3389/fnbeh.2019.00045
Gruene, T. M., Flick, K., Stefano, A., Shea, S. D. & Shansky, R. M. Sexually divergent expression of active and passive conditioned fear responses in rats. eLife 4, e11352 (2015). This study demonstrates a sex difference in freezing responses that has implications for interpreting fear conditioning studies in rats.
pubmed: 26568307 pmcid: 4709260 doi: 10.7554/eLife.11352
Bangasser, D. To freeze or not to freeze. eLife 4, e13119 (2015).
pubmed: 26701934 pmcid: 4744195 doi: 10.7554/eLife.13119
Kokras, N. & Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol. 171, 4595–4619 (2014).
pubmed: 24697577 pmcid: 4209934 doi: 10.1111/bph.12710
Morena, M. et al. Sex-dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br. J. Pharmacol. 178, 983–996 (2021).
pubmed: 33314038 doi: 10.1111/bph.15341
Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).
pubmed: 10440374 doi: 10.1038/22761
Gunduz-Cinar, O. et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 18, 813–823 (2013).
pubmed: 22688188 doi: 10.1038/mp.2012.72
Llorente-Berzal, A. et al. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology 232, 2811–2825 (2015).
pubmed: 25814137 doi: 10.1007/s00213-015-3917-y
Neumeister, A. et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18, 1034–1040 (2013).
pubmed: 23670490 pmcid: 3752332 doi: 10.1038/mp.2013.61
Lebron-Milad, K. & Milad, M. R. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol. Mood Anxiety Disord. 2, 3 (2012).
pubmed: 22738383 pmcid: 3384233 doi: 10.1186/2045-5380-2-3
Milad, M. R., Igoe, S. A., Lebron-Milad, K. & Novales, J. E. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 164, 887–895 (2009).
pubmed: 19761818 doi: 10.1016/j.neuroscience.2009.09.011
Baran, S. E., Armstrong, C. E., Niren, D. C., Hanna, J. J. & Conrad, C. D. Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol. Learn. Mem. 91, 323–332 (2009).
pubmed: 19073269 pmcid: 2673234 doi: 10.1016/j.nlm.2008.11.005
Hwang, M. J. et al. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction. BMC Psychiatry 15, 295 (2015). This paper demonstrates a role for ovarian hormones in regulating fear extinction.
pubmed: 26581193 pmcid: 4652367 doi: 10.1186/s12888-015-0673-9
Rey, C. D., Lipps, J. & Shansky, R. M. Dopamine D1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal–amygdala circuits. Neuropsychopharmacology 39, 1282–1289 (2014).
pubmed: 24343528 pmcid: 3957124 doi: 10.1038/npp.2013.338
Shansky, R. M. Are hormones a “female problem” for animal research? Science 364, 825–826 (2019).
pubmed: 31147505 doi: 10.1126/science.aaw7570
Peters, L., Issakidis, C., Slade, T. I. M. & Andrews, G. Gender differences in the prevalence of DSM-IV and ICD-10 PTSD. Psychol. Med. 36, 81–89 (2005).
doi: 10.1017/S003329170500591X
Plante, D. T. et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatry 12, 146 (2012).
pubmed: 22989072 pmcid: 3507703 doi: 10.1186/1471-244X-12-146
Kobayashi, I. & Mellman, T. A. Gender differences in sleep during the aftermath of trauma and the development of posttraumatic stress disorder. Behav. Sleep Med. 10, 180–190 (2012).
pubmed: 22742436 pmcid: 3947587 doi: 10.1080/15402002.2011.654296
Murphy, S., Elklit, A., Chen, Y. Y., Ghazali, S. R. & Shevlin, M. Sex differences in PTSD symptoms: a differential item functioning approach. Psychol. Trauma 11, 319–327 (2019).
pubmed: 29723027 doi: 10.1037/tra0000355
Nolen-Hoeksema, S., Larson, J. & Grayson, C. Explaining the gender difference in depressive symptoms. J. Pers. Soc. Psychol. 77, 1061–1072 (1999).
pubmed: 10573880 doi: 10.1037/0022-3514.77.5.1061
Nemeroff, C. B., Bissette, G., Akil, H. & Fink, M. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, β-endorphin and somatostatin. Br. J. Psychiatry 158, 59–63 (1991).
pubmed: 1673078 doi: 10.1192/bjp.158.1.59
Heuser, I. et al. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress. Anxiety 8, 71–79 (1998).
pubmed: 9784981 doi: 10.1002/(SICI)1520-6394(1998)8:2<71::AID-DA5>3.0.CO;2-N
Bremner, J. D. et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry 154, 624–629 (1997).
pubmed: 9137116 pmcid: 3233756 doi: 10.1176/ajp.154.5.624
Baker, D. G. et al. Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 162, 992–994 (2005).
pubmed: 15863803 doi: 10.1176/appi.ajp.162.5.992
Wang, S. S., Kamphuis, W., Huitinga, I., Zhou, J. N. & Swaab, D. F. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol. Psychiatry 13, 786–799 (2008).
pubmed: 18427561 doi: 10.1038/mp.2008.38
Valentino, R. J. & Van Bockstaele, E. J. in Hormones, Brain and Behavior Vol. 4 (eds Arnold, A. et al.) 81–102 (Academic, 2002).
Valentino, R. J., Foote, S. L. & Page, M. E. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann. N. Y. Acad. Sci. 697, 173–188 (1993).
pubmed: 7903030 doi: 10.1111/j.1749-6632.1993.tb49931.x
Szabadi, E. Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 27, 659–693 (2013).
pubmed: 23761387 doi: 10.1177/0269881113490326
Aston-Jones, G. in The Rat Nervous System 3rd edn 259–294 (Academic, 2004).
Berridge, C. W. & Waterhouse, B. D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).
pubmed: 12668290 doi: 10.1016/S0165-0173(03)00143-7
Berridge, C. W., Page, M. E., Valentino, R. J. & Foote, S. L. Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55, 381–383 (1993).
pubmed: 8104319 doi: 10.1016/0306-4522(93)90507-C
Page, M. E., Berridge, C. W., Foote, S. L. & Valentino, R. J. Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neurosci. Lett. 164, 81–84 (1993).
pubmed: 8152620 doi: 10.1016/0304-3940(93)90862-F
Curtis, A. L., Grigoriadis, D. E., Page, M. E., Rivier, J. & Valentino, R. J. Pharmacological comparison of two corticotropin-releasing factor antagonists: in vivo and in vitro studies. J. Pharmacol. Exp. Ther. 268, 359–365 (1994).
pubmed: 8301577
Curtis, A. L., Lechner, S. M., Pavcovich, L. A. & Valentino, R. J. Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J. Pharmacol. Exp. Ther. 281, 163–172 (1997).
pubmed: 9103494
Lechner, S. M., Curtis, A. L., Brons, R. & Valentino, R. J. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res. 756, 114–124 (1997).
pubmed: 9187321 doi: 10.1016/S0006-8993(97)00116-9
Valentino, R. J., Curtis, A. L., Page, M. E., Pavcovich, L. A. & Florin-Lechner, S. M. Activation of the locus ceruleus brain noradrenergic system during stress: circuitry, consequences, and regulation. Adv. Pharmacol. 42, 781–784 (1998).
pubmed: 9328014 doi: 10.1016/S1054-3589(08)60863-7
Curtis, A. L., Bethea, T. & Valentino, R. J. Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 31, 544–554 (2006).
pubmed: 16123744 doi: 10.1038/sj.npp.1300875
Bangasser, D. A. et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 15, 896–904 (2010). This paper finds that a receptor that mediates a stress neuropeptide signals differently in males versus females.
doi: 10.1038/mp.2010.66
Valentino, R. J., Page, M. E. & Curtis, A. L. Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res. 555, 25–34 (1991).
pubmed: 1933327 doi: 10.1016/0006-8993(91)90855-P
Jedema, H. P. & Grace, A. A. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J. Neurosci. 24, 9703–9713 (2004).
pubmed: 15509759 pmcid: 6730164 doi: 10.1523/JNEUROSCI.2830-04.2004
Stenzel-Poore, M. P., Heinrichs, S. C., Rivest, S., Koob, G. F. & Vale, W. W. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J. Neurosci. 14, 2579–2584 (1994).
pubmed: 8182429 pmcid: 6577466 doi: 10.1523/JNEUROSCI.14-05-02579.1994
Bangasser, D. A. et al. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Mol. Psychiatry 22, 1126–1133 (2017).
pubmed: 27752081 doi: 10.1038/mp.2016.185
Violin, J. D. & Lefkowitz, R. J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).
pubmed: 17644195 doi: 10.1016/j.tips.2007.06.006
Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).
pubmed: 15845844 doi: 10.1126/science.1109237
Valentino, R. J. & Bangasser, D. A. Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. Dialogues Clin. Neurosci. 18, 385–393 (2016).
pubmed: 28179810 pmcid: 5286724 doi: 10.31887/DCNS.2016.18.4/rvalentino
Valentino, R. J., Bangasser, D. & Van Bockstaele, E. J. Sex-biased stress signaling: the corticotropin-releasing factor receptor as a model. Mol. Pharmacol. 83, 737–745 (2013).
pubmed: 23239826 pmcid: 3608440 doi: 10.1124/mol.112.083550
Bangasser, D. A., Eck, S. R., Telenson, A. M. & Salvatore, M. Sex differences in stress regulation of arousal and cognition. Physiol. Behav. 187, 42–50 (2018).
pubmed: 28974457 doi: 10.1016/j.physbeh.2017.09.025
Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998).
pubmed: 9597157 doi: 10.1146/annurev.pharmtox.38.1.289
Reyes, B. A., Valentino, R. J. & Van Bockstaele, E. J. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 149, 122–130 (2008).
pubmed: 17947354 doi: 10.1210/en.2007-0705
Bangasser, D. A. et al. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol. Psychiatry 18, 166–173 (2013).
pubmed: 22508464 doi: 10.1038/mp.2012.24
Murrough, J. W. & Charney, D. S. Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: time to call it quits? Biol. Psychiatry 82, 858–860 (2017).
pubmed: 29129198 doi: 10.1016/j.biopsych.2017.10.012
Ising, M. et al. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32, 1941–1949 (2007).
pubmed: 17287823 doi: 10.1038/sj.npp.1301328
Valentino, R. J., Van Bockstaele, E. & Bangasser, D. Sex-specific cell signaling: the corticotropin-releasing factor receptor model. Trends Pharmacol. Sci. 34, 437–444 (2013).
pubmed: 23849813 pmcid: 3752157 doi: 10.1016/j.tips.2013.06.004
Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).
pubmed: 29302067 pmcid: 5936084 doi: 10.1038/nrd.2017.229
Seidel, E.-M. et al. Implicit and explicit behavioral tendencies in male and female depression. Psychiatry Res. 177, 124–130 (2010).
pubmed: 20199811 doi: 10.1016/j.psychres.2010.02.001
Asher, M., Asnaani, A. & Aderka, I. M. Gender differences in social anxiety disorder: a review. Clin. Psychol. Rev. 56, 1–12 (2017).
pubmed: 28578248 doi: 10.1016/j.cpr.2017.05.004
Heimberg, R. G. Social Phobia: Diagnosis, Assessment, and Treatment (Guilford Press, 1995).
Newman, E. L. et al. Fighting females: neural and behavioral consequences of social defeat stress in female mice. Biol. Psychiatry 86, 657–668 (2019).
pubmed: 31255250 pmcid: 6788975 doi: 10.1016/j.biopsych.2019.05.005
Silva, A. L., Fry, W. H. D., Sweeney, C. & Trainor, B. C. Effects of photoperiod and experience on aggressive behavior in female California mice. Behav. Brain Res. 208, 528–534 (2010).
pubmed: 20060017 pmcid: 2831116 doi: 10.1016/j.bbr.2009.12.038
Trainor, B. C. et al. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding. Horm. Behav. 63, 543–550 (2013).
pubmed: 23384773 pmcid: 3637973 doi: 10.1016/j.yhbeh.2013.01.011
Beery, A. K. Antisocial oxytocin: complex effects on social behavior. Curr. Opin. Behav. Sci. 6, 174–182 (2015).
doi: 10.1016/j.cobeha.2015.11.006
Shamay-Tsoory, S. G. & Abu-Akel, A. The social salience hypothesis of oxytocin. Biol. Psychiatry 79, 194–202 (2016).
pubmed: 26321019 doi: 10.1016/j.biopsych.2015.07.020
Steinman, M. Q. et al. Sex-specific effects of stress on oxytocin neurons correspond with responses to intranasal oxytocin. Biol. Psychiatry 80, 406–414 (2016).
pubmed: 26620251 doi: 10.1016/j.biopsych.2015.10.007
Duque-Wilckens, N. et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc. Natl Acad. Sci. USA 117, 26406–26413 (2020). This paper demonstrates that oxytocin synthesis within the BNST is necessary for stress-induced disruptions in social approach and vigilance.
pubmed: 33020267 pmcid: 7585015 doi: 10.1073/pnas.2011890117
Duque-Wilckens, N. et al. Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female california mice. Biol. Psychiatry 83, 203–213 (2018).
pubmed: 29066224 doi: 10.1016/j.biopsych.2017.08.024
Lukas, M. et al. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 36, 2159–2168 (2011).
pubmed: 21677650 pmcid: 3176581 doi: 10.1038/npp.2011.95
Kubzansky, L. D., Mendes, W. B., Appleton, A. A., Block, J. & Adler, G. K. A heartfelt response: oxytocin effects on response to social stress in men and women. Biol. Psychol. 90, 1–9 (2012).
pubmed: 22387929 pmcid: 3327158 doi: 10.1016/j.biopsycho.2012.02.010
Holt-Lunstad, J., Birmingham, W. & Light, K. C. The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology 36, 1249–1256 (2011).
pubmed: 21507578 doi: 10.1016/j.psyneuen.2011.03.007
Cyranowski, J. M. et al. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med. 70, 967–975 (2008).
pubmed: 19005082 pmcid: 3397424 doi: 10.1097/PSY.0b013e318188ade4
Maier, S. F. & Seligman, M. E. P. Learned helplessness at fifty: insights from neuroscience. Psychol. Rev. 123, 349–367 (2016).
pubmed: 27337390 pmcid: 4920136 doi: 10.1037/rev0000033
Maier, S. F. & Watkins, L. R. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841 (2005).
pubmed: 15893820 doi: 10.1016/j.neubiorev.2005.03.021
Maier, S. F. Behavioral control blunts reactions to contemporaneous and future adverse events: medial prefrontal cortex plasticity and a corticostriatal network. Neurobiol. Stress. 1, 12–22 (2015).
pubmed: 25506602 doi: 10.1016/j.ynstr.2014.09.003
Dalla, C., Edgecomb, C., Whetstone, A. S. & Shors, T. J. Females do not express learned helplessness like males do. Neuropsychopharmacology 33, 1559–1569 (2008).
pubmed: 17712351 doi: 10.1038/sj.npp.1301533
Baratta, M. V. et al. Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males, but not females. Brain Struct. Funct. 224, 1831–1843 (2019).
pubmed: 31028464 pmcid: 6565440 doi: 10.1007/s00429-019-01875-z
Baratta, M. V. et al. Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. Eur. J. Neurosci. 47, 959–967 (2018).
pubmed: 29359831 pmcid: 5902414 doi: 10.1111/ejn.13833
Whitton, A. E., Treadway, M. T. & Pizzagalli, D. A. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr. Opin. Psychiatry 28, 7–12 (2015).
pubmed: 25415499 pmcid: 4277233 doi: 10.1097/YCO.0000000000000122
Treadway, M. T. & Zald, D. H. Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Curr. Dir. Psychol. Sci. 22, 244–249 (2013).
pubmed: 24748727 pmcid: 3989147 doi: 10.1177/0963721412474460
Francis, T. C. & Lobo, M. K. Emerging role for nucleus accumbens medium spiny neuron subtypes in depression. Biol. Psychiatry 81, 645–653 (2017).
pubmed: 27871668 doi: 10.1016/j.biopsych.2016.09.007
Wacker, J., Dillon, D. G. & Pizzagalli, D. A. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. NeuroImage 46, 327–337 (2009).
pubmed: 19457367 doi: 10.1016/j.neuroimage.2009.01.058
Hodes, G. E. et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 35, 16362–16376 (2015). This paper identifies an epigenetic change that contributes to female vulnerability to chronic stressor exposure.
pubmed: 26674863 pmcid: 4679819 doi: 10.1523/JNEUROSCI.1392-15.2015
Williams, E. S. et al. Androgen-dependent excitability of mouse ventral hippocampal afferents to nucleus accumbens underlies sex-specific susceptibility to stress. Biol. Psychiatry 87, 492–501 (2020). This paper delineates a circuit that underlies female vulnerability to stress-induced anhedonia and links male resilience to androgens.
pubmed: 31601425 doi: 10.1016/j.biopsych.2019.08.006
Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).
pubmed: 28825715 pmcid: 5734943 doi: 10.1038/nm.4386
Rincón-Cortés, M. & Grace, A. A. Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int. J. Neuropsychopharmacol. 20, 823–832 (2017).
pubmed: 28591782 pmcid: 5632304 doi: 10.1093/ijnp/pyx048
Holly, E. N., Shimamoto, A., Debold, J. F. & Miczek, K. A. Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacology 224, 179–188 (2012).
pubmed: 22926005 pmcid: 3684960 doi: 10.1007/s00213-012-2846-2
Dalla, C. et al. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav. 93, 595–605 (2008).
pubmed: 18031771 doi: 10.1016/j.physbeh.2007.10.020
Brancato, A. et al. Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience 350, 180–189 (2017).
pubmed: 28323008 doi: 10.1016/j.neuroscience.2017.03.014
Muir, J. et al. Ventral hippocampal afferents to nucleus accumbens encode both latent vulnerability and stress-induced susceptibility. Biol. Psychiatry 88, 843–854 (2020).
pubmed: 32682566 doi: 10.1016/j.biopsych.2020.05.021
Shansky, R. M. & Murphy, A. Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci. 24, 457–464 (2021).
pubmed: 33649507 doi: 10.1038/s41593-021-00806-8
Campbell, E. J. & Marchant, N. J. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br. J. Pharmacol. 175, 994–1003 (2018).
pubmed: 29338070 pmcid: 5843707 doi: 10.1111/bph.14146
Spiller, C., Koopman, P. & Bowles, J. Sex determination in the mammalian germline. Annu. Rev. Genet. 51, 265–285 (2017).
pubmed: 28853925 doi: 10.1146/annurev-genet-120215-035449
Disteche, C. M. Dosage compensation of the sex chromosomes and autosomes. Semin. Cell Dev. Biol. 56, 9–18 (2016).
pubmed: 27112542 pmcid: 4955796 doi: 10.1016/j.semcdb.2016.04.013
Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).
pubmed: 29022598 pmcid: 5685192 doi: 10.1038/nature24265
Migeon, B. R. The role of X inactivation and cellular mosaicism in women’s health and sex-specific diseases. JAMA 295, 1428–1433 (2006).
pubmed: 16551715 doi: 10.1001/jama.295.12.1428
Corre, C. et al. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct. Funct. 221, 997–1016 (2016).
pubmed: 25445841 doi: 10.1007/s00429-014-0952-0
Vousden, D. A. et al. Impact of X/Y genes and sex hormones on mouse neuroanatomy. NeuroImage 173, 551–563 (2018).
pubmed: 29501873 doi: 10.1016/j.neuroimage.2018.02.051
Seney, M. L., Ekong, K. I., Ding, Y., Tseng, G. C. & Sibille, E. Sex chromosome complement regulates expression of mood-related genes. Biol. Sex. Differ. 4, 20 (2013).
pubmed: 24199867 pmcid: 4175487 doi: 10.1186/2042-6410-4-20
Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).
pubmed: 15452574 doi: 10.1038/nn1325
Schulz, K. M., Molenda-Figueira, H. A. & Sisk, C. L. Back to the future: the organizational–activational hypothesis adapted to puberty and adolescence. Horm. Behav. 55, 597–604 (2009).
pubmed: 19446076 pmcid: 2720102 doi: 10.1016/j.yhbeh.2009.03.010
Jain, A., Huang, G. Z. & Woolley, C. S. Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus. J. Neurosci. 39, 1552–1565 (2019).
pubmed: 30578341 pmcid: 6391563
Paelecke-Habermann, Y., Pohl, J. & Leplow, B. Attention and executive functions in remitted major depression patients. J. Affect. Disord. 89, 125–135 (2005).
pubmed: 16324752 doi: 10.1016/j.jad.2005.09.006
Eck, S. R. et al. Stress regulation of sustained attention and the cholinergic attention system. Biol. Psychiatry 88, 566–575 (2020).
pubmed: 32600739 pmcid: 7487022 doi: 10.1016/j.biopsych.2020.04.013
Seney, M. L. et al. Opposite molecular signatures of depression in men and women. Biol. Psychiatry 84, 18–27 (2018).
pubmed: 29548746 pmcid: 6014892 doi: 10.1016/j.biopsych.2018.01.017
Seney, M. L., Glausier, J. & Sibille, E. Large-scale transcriptomics studies provide insight into sex differences in depression. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.12.025 (2021).
doi: 10.1016/j.biopsych.2020.12.025 pubmed: 34380600 pmcid: 8263802
Bollinger, J. L., Bergeon Burns, C. M. & Wellman, C. L. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav. Immun. 52, 88–97 (2016).
pubmed: 26441134 doi: 10.1016/j.bbi.2015.10.003
Torres-Platas, S. G., Cruceanu, C., Chen, G. G., Turecki, G. & Mechawar, N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 42, 50–59 (2014).
pubmed: 24858659 doi: 10.1016/j.bbi.2014.05.007
Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012).
pubmed: 22885997 pmcid: 3491115 doi: 10.1038/nm.2886
Garrett, J. E. & Wellman, C. L. Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162, 195–207 (2009).
pubmed: 19401219 doi: 10.1016/j.neuroscience.2009.04.057
Baratta, M. V. et al. Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear. Neuroscience 146, 1495–1503 (2007).
pubmed: 17478046 doi: 10.1016/j.neuroscience.2007.03.042
Christianson, J. P. et al. The role of prior stressor controllability and the dorsal raphé nucleus in sucrose preference and social exploration. Behav. Brain Res. 193, 87–93 (2008).
pubmed: 18554730 pmcid: 2583404 doi: 10.1016/j.bbr.2008.04.024
Amat, J., Paul, E., Zarza, C., Watkins, L. R. & Maier, S. F. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26, 13264–13272 (2006).
pubmed: 17182776 pmcid: 6675012 doi: 10.1523/JNEUROSCI.3630-06.2006
Valentino, R. J., Reyes, B., Van Bockstaele, E. & Bangasser, D. Molecular and cellular sex differences at the intersection of stress and arousal. Neuropharmacology 62, 13–20 (2012).
pubmed: 21712048 doi: 10.1016/j.neuropharm.2011.06.004

Auteurs

Debra A Bangasser (DA)

Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA. debra.bangasser@temple.edu.

Amelia Cuarenta (A)

Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH