Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
19 Jan 2022
19 Jan 2022
Historique:
pubmed:
22
9
2021
medline:
22
9
2021
entrez:
21
9
2021
Statut:
epublish
Résumé
Given the importance of variant SARS-CoV-2 viruses with altered receptor-binding or antigenic phenotypes, we sought to quantify the degree to which adaptive evolution is driving accumulation of mutations in the SARS-CoV-2 genome. Here we assessed adaptive evolution across genes in the SARS-CoV-2 genome by correlating clade growth with mutation accumulation as well as by comparing rates of nonsynonymous to synonymous divergence, clustering of mutations across the SARS-CoV-2 phylogeny and degree of convergent evolution of individual mutations. We find that spike S1 is the focus of adaptive evolution, but also identify positively-selected mutations in other genes that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5X greater than that observed in HA1 at the beginning of the 2009 H1N1 pandemic.
Identifiants
pubmed: 34545361
doi: 10.1101/2021.09.11.459844
pmc: PMC8452090
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM119774
Pays : United States
Commentaires et corrections
Type : UpdateIn
Références
Infect Genet Evol. 2020 Sep;83:104351
pubmed: 32387564
Mol Cell. 2020 May 21;78(4):779-784.e5
pubmed: 32362314
Virus Evol. 2018 Jan 08;4(1):vex042
pubmed: 29340210
PLoS Pathog. 2021 Apr 8;17(4):e1009453
pubmed: 33831132
Cell Host Microbe. 2021 Mar 10;29(3):463-476.e6
pubmed: 33592168
J Infect. 2020 Jul;81(1):e24-e27
pubmed: 32283146
Science. 2009 Oct 30;326(5953):734-6
pubmed: 19900932
Nature. 2021 Apr;592(7855):616-622
pubmed: 33567448
Nature. 2022 Sep;609(7929):994-997
pubmed: 35952714
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Cell. 2020 Sep 3;182(5):1284-1294.e9
pubmed: 32730807
Nat Commun. 2022 Jul 20;13(1):4186
pubmed: 35859071
Science. 2021 Mar 12;371(6534):1139-1142
pubmed: 33536258
Microbiol Spectr. 2022 Aug 31;10(4):e0151422
pubmed: 35766497
Euro Surveill. 2021 Jun;26(24):
pubmed: 34142653
Elife. 2021 Jan 19;10:
pubmed: 33463525
Nature. 1991 Jun 20;351(6328):652-4
pubmed: 1904993
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29):
pubmed: 34292871
Nature. 2022 Mar;603(7902):679-686
pubmed: 35042229
Science. 2004 Jul 16;305(5682):371-6
pubmed: 15218094
Nat Commun. 2021 May 11;12(1):2642
pubmed: 33976134
Nat Commun. 2021 May 11;12(1):2697
pubmed: 33976229
Nature. 2022 Feb;602(7898):654-656
pubmed: 35016196
J Open Source Softw. 2021;6(57):
pubmed: 34189396
Biol Direct. 2006 Oct 26;1:34
pubmed: 17067369
Elife. 2014;3:e01914
pubmed: 24497547
Nat Commun. 2015 Aug 06;6:7952
pubmed: 26245473
Bioinformatics. 2018 Dec 1;34(23):4121-4123
pubmed: 29790939
Euro Surveill. 2017 Mar 30;22(13):
pubmed: 28382917
Nat Microbiol. 2021 Jul;6(7):821-823
pubmed: 34108654
Cell Rep. 2020 Oct 6;33(1):108234
pubmed: 32979938
Cell. 2020 Sep 3;182(5):1295-1310.e20
pubmed: 32841599
Cell Rep. 2022 May 17;39(7):110829
pubmed: 35550680
Cell. 2021 Sep 30;184(20):5189-5200.e7
pubmed: 34537136
N Engl J Med. 2020 Dec 3;383(23):2291-2293
pubmed: 33176080
PLoS Biol. 2020 Jun 8;18(6):e3000715
pubmed: 32511245