Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) in Surface Water of China: National Exposure Distributions and Probabilistic Risk Assessment.
Journal
Archives of environmental contamination and toxicology
ISSN: 1432-0703
Titre abrégé: Arch Environ Contam Toxicol
Pays: United States
ID NLM: 0357245
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
14
06
2020
accepted:
11
03
2021
pubmed:
22
9
2021
medline:
1
10
2021
entrez:
21
9
2021
Statut:
ppublish
Résumé
This study presents a comprehensive application of the probabilistic risk assessment methodology for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which are two types of perfluoroalkyl acids frequently studied in recent years. The exposure characteristics of PFOA and PFOS in Chinese surface water on a nationwide scale were summarized. Individual predicted no-effect concentration (PNEC) and the sensitivities for taxonomic groups of primary producers, invertebrates, and vertebrates were derived by the species sensitivity distributions method. Both hazard quotients (HQs) and joint probability curves were calculated to assess the risks to aquatic organisms. Among seven Chinese river basins, the mean concentrations of PFOA and PFOS in the Yangtze River Basin were the highest (58 ng/L and 22 ng/L, respectively), while the lowest concentrations (< 1 ng/L) were in the Songhua River Basin. The acute PNEC value was 2.43 mg/L for PFOA and 0.96 mg/L for PFOS, and the chronic PNEC value was 0.0067 mg/L for PFOA and 0.0012 mg/L for PFOS, respectively. The sensitivities of different taxonomic groups revealed higher sensitivity of primary producers for PFOA and higher sensitivity of invertebrates for PFOS. The acute HQs of PFOA and PFOS were less than 1. The probabilities of exposure concentrations exceeding 5th percentile toxicity value of the chronic data for all aquatic organisms were 1.65% for PFOA and 1.23% for PFOS, respectively, suggesting a low probability of effects to aquatic organisms. Compared with the risk scenarios worldwide, the ecological risks for chronic effects decreased in the order of PFOS (worldwide) > PFOA (China) > PFOS (China) > PFOA (worldwide).
Identifiants
pubmed: 34545443
doi: 10.1007/s00244-021-00837-z
pii: 10.1007/s00244-021-00837-z
doi:
Substances chimiques
Alkanesulfonic Acids
0
Caprylates
0
Fluorocarbons
0
Water Pollutants, Chemical
0
Water
059QF0KO0R
perfluorooctanoic acid
947VD76D3L
perfluorooctane sulfonic acid
9H2MAI21CL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
470-481Subventions
Organisme : the National Science Funds for Creative Research Groups of China
ID : 51421006
Organisme : the National Key Plan for Research and Development of China
ID : 2016YFC0502203
Organisme : the Key Program of National Natural Science Foundation of China
ID : 91647206
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Adam V, von Wyl A, Nowack B (2020) Probabilistic environmental risk assessment of microplastics in marine habitats. Aquat Toxicol 230:105689
doi: 10.1016/j.aquatox.2020.105689
Ahrens L (2011) Polyfluorooalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 13:20–31
doi: 10.1039/C0EM00373E
Australian and New Zealand Environment and Conservation Council (ANZECC) (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. I. TheGuiGuidelines, vol 1. Department of the Environment, pp 1–103
Bao J, Liu W, Liu L, Jin YH, Ran XR, Zhang ZX, Tsuda S (2011) Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China. Environ Sci Technol 45:8075–8080
doi: 10.1021/es102610x
Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005) Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut 136:323–329
doi: 10.1016/j.envpol.2004.12.020
Boudreau TM, Wilson CJ, Cheong WJ, Sibley PK, Mabury SA, Muir DC, Solomon KR (2003) Response of the zooplankton community and environmental fate of perfluorooctane sulfonic acid in aquatic microcosms. Environ Toxicol Chem 22:2739–2745
doi: 10.1897/02-394
Brignole AJ, Porch JR, Krueger HO et al (2003) PFOS: a toxicity test to determine the effects of the test substance on seedling emergence of seven species of plants. Wildlife International, Ltd. EPA Docket AR 226-1369
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541
doi: 10.1002/ieam.258
Cai M, Zhao Z, Yin Z, Ahrens L, Huang P, Cai M, Yang H, He J, Sturm R, Ebinghaus R, Xie Z (2012) Occurrence of perfluoroalkyl compounds in surface water from the North Pacific to the Arctic Ocean. Environ Sci Technol 46:661–668
doi: 10.1021/es2026278
Campo J, Perez F, Masia A, Pico Y, Farre M, Barcelo D (2015) Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Sci Total Environ 503:48–57
doi: 10.1016/j.scitotenv.2014.05.094
Cao Y, Zhou TY, Liu XH, Zhang YH, Liu ZT (2013) Predicted non-effect concentrations for perfluorooctanoic acid (PFOA) in the environment of China. Environ Chem 32:1180–1187 (in Chinese)
Chen C, Mu Y, Wu F, Zhang R, Su H, Giesy JP (2015) Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model. Environ Sci Pollut Res 22:4297–4304
doi: 10.1007/s11356-014-3655-4
Colombo I, Wolf WD, Thompson RS, Farrar DG, Hoke RA, L’Haridon J (2008) Acute and chronic aquatic toxicity of ammonium perfluorooctanoate (APFO) to freshwater organisms. Ecotoxicol Environ Saf 71:749–756
doi: 10.1016/j.ecoenv.2008.04.002
Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003
doi: 10.1021/es070895g
EU (1996) Technical guidance document in support of council directive 93/67/EEC on risk assessment for new notified substance, commission regulation (EC) 1488/94 on risk assessment for existing substances and directive 98/8/EC of the European parliament and of the council concerning the placing of biocide products on the market. Office for Official Publications of the European Communities. Luxembourg
European Chemical Bureau (2003) Technical guidance document on risk assessment. EUR 20418 EN/2
Fu ZY, Wu FC, Chen LL, Xu BB, Feng CL, Bai YC, Liao HQ, Sun SY, Giesy JP, Guo WJ (2016) Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ Pollut 219:1069–1076
doi: 10.1016/j.envpol.2016.09.007
Gao P, Li Z, Gibson M, Gao H (2014) Ecological risk assessment of nonylphenol in coastal water of China based on species sensitivity distribution model. Chemosphere 104:113–119
doi: 10.1016/j.chemosphere.2013.10.076
Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342
doi: 10.1021/es001834k
Grechi L, Franco A, Palmeri L, Pivato A, Barausse A (2016) An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics. Ecol Model 332:42–58
doi: 10.1016/j.ecolmodel.2016.03.008
Gredelj A, Barausse A, Grechi L, Palmeri L (2018) Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Environ Int 119:66–78
doi: 10.1016/j.envint.2018.06.017
Hall LW Jr, Scott MC, Killen WD (1998) Ecological assessment of copper and cadmium in surface water of Chesapeake Bay watershed. Environ Toxicol Chem 17:1172–1189
doi: 10.1002/etc.5620170626
Helel DR (2005) More than obvious: better methods for interpreting nondetect data. Environ Sci Technol 39:419–423
doi: 10.1021/es053368a
Hope BK (2006) An examination of ecological risk assessment and management practices. Environ Int 32:983–995
doi: 10.1016/j.envint.2006.06.005
Jeffrey B (2007) Surface water quality criterion for perfluorooctanoic acid. Minnesota Pollution Control Agency, Minnesota
Labadie P, Chevreuil M (2011) Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions. Environ Pollut 159:3634–3639
doi: 10.1016/j.envpol.2011.07.028
Lam NH, Cho CR, Kannan K, Cho HS (2017) A nationwide survey of perfluorinated alkyl substances in water, sediment and biota collected from aquatic environment in Vietnam: distributions and bioconcentration profiles. J Hazard Mater 323:116–127
doi: 10.1016/j.jhazmat.2016.04.010
Lei B, Huang H, Jin X, Wang Z (2010) Deriving the aquatic predicted no-effect concentrations (PNECs) of three chlorophenols for the Taihu Lake, China. J Environ Sci Health A 45:1823–1831
doi: 10.1080/10934529.2010.520495
Li L, Zhai Z, Liu J, Hu J (2015) Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012. Chemosphere 129:100–109
doi: 10.1016/j.chemosphere.2014.11.049
Li J, Gao Y, Wang ZF, Wang BW, Hao HS, Xu YR, Zhu TT, Xu N, Ni JR (2017) Risk assessment of perfluoroalkyl compounds (PFCs) in WATER AND SEDIMENT SAMPLES of Hanjiang River. Acta Scientiarum Naturalium Universitatis Pekinensis 53:913–920 (in Chinese)
Li Q, Cheng B, Liu S, Zhang YB, Zhou L, Guo JH (2020) Assessment of the risks of the major use anbiotics in China’s surface waters using a probabilistic approach. Integr Environ Assess Manag 16:43–52
doi: 10.1002/ieam.4204
Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45:7954–7961
doi: 10.1021/es2011622
Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem 27:1597–1604
doi: 10.1897/07-459.1
Liu Z, Lu Y, Pei W, Wang T, Liu S, Johnson AC, Sweetman AJ, Baninla Y (2017) Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Sci Total Environ 580:1247–1256
doi: 10.1016/j.scitotenv.2016.12.085
Lu GH, Yang YL, Taniyasu S, Yeung LWY, Pan J, Zhou B, Lam PKS, Yamashita N (2011) Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas. Environ Chem 8:407–418
doi: 10.1071/EN10139
Lu GH, Liu JC, Sun LS, Yuan LJ (2015) Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna. Water Sci Eng 8:40–48
doi: 10.1016/j.wse.2015.01.001
MacDonald MM, Warne AL, Stock NL, Mabury SA, Solomon KR, Sibley PK (2004) Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid to Chironomus tentans. Environ Toxicol Chem 23:2116–2123
doi: 10.1897/03-449
Ministry of Ecology and Environment the People’s Republic of China (2019) Country to prohibit or restrict several polluting compounds. http://english.mee.gov.cn/News_service/media_news/201904/t20190416_699934.shtml . Accessed 25 Nov 2020
Ng CA, Hungerbühler K (2014) Bioaccumulation of perfluorinated alkyl acids: observations and models. Environ Sci Technol 48:4637–4648
doi: 10.1021/es404008g
Oughton DH, Agüero A, Avila R, Brown JE, Copplestone D, Gilek M (2008) Addressing uncertainties in the ERICA integrated approach. J Environ Radioact 99:1348–1392
doi: 10.1016/j.jenvrad.2008.03.005
Pan CG, Ying GG, Liu YS, Zhang QQ, Chen ZF, Peng FJ, Huang GY (2014) Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China. Chemosphere 114:16–25
doi: 10.1016/j.chemosphere.2014.04.005
Park S, Hong Y, Lee J, Kho Y, Ji K (2019) Chronic effects of bisphenol S and bisphenol SIP on freshwater waterflea and ecological risk assessment. Ecotoxicol Environ Saf 186:1–6
doi: 10.1016/j.ecoenv.2019.109721
Paul GA, Scheringer M, Hungerbuhler K, Loos R, Jones KC, Sweetman AJ (2012) Estimating the aquatic emissions and fate of perfluorooctane sulfonate (PFOS) into the river Rhine. J Environ Monit 14:524–530
doi: 10.1039/C1EM10432B
Pignotti E, Dinelli E (2018) Distribution and partition of endocrine disrupting compounds in water and sediment: Case study of the Romagna area (North Italy). J Geochem Explor 195:66–77
doi: 10.1016/j.gexplo.2018.02.008
POPs Action in China (2014) http://www.china-pops.org . Accessed June 2019
Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117
doi: 10.1016/j.envres.2012.03.007
RIVM (2001) Guidance document on deriving environmental risk limits. (RIVM Report 601501012) National Institute of Public Health and the Environment, Bilthoven, Netherlands
Rodríguez-Gil JL, Cáceres N, Dafouz R, Valcárcel Y (2018) Caffeine and paraxanthine in aquatic systems: global exposure distributions and probabilistic risk assessment. Sci Total Environ 612:1058–1071
doi: 10.1016/j.scitotenv.2017.08.066
Route WT, Russell RE, Lindstrom AB, Strynar MJ, Key RL (2014) Correction to spatial and temporal patterns in concentrations of perfluorinated compounds in Bald Eagle nestlings in the upper Midwestern United States. Environ Sci Technol 48:6653–6660
doi: 10.1021/es501055d
Solomon K, Giesy J, Jones P (2000) Probabilistic risk assessment of agrochemicals in the environment. Crop Prot 19:649–655
doi: 10.1016/S0261-2194(00)00086-7
Solomon KR, Giesy JP, Lapoint TW, Giddings JM, Richards RP (2013) Ecological risk assessment of atrazine in North American surface water. Environ Toxicol Chem 32:10–11
doi: 10.1002/etc.2050
Stefani F, Rusconi M, Valsecchi S, Marziali L (2014) Evolutionary ecotoxicology of perfluoralkyl substances (PFASs) inferred from multigenerational exposure: a case study with Chironomus riparius (Diptera, Chironomidae). Aquat Toxicol 156:41–51
doi: 10.1016/j.aquatox.2014.07.020
Sun ZS, Zhang CJ, Yan H, Han CL, Chen L, Meng XZ, Zhou Q (2017) Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China. Chemosphere 174:127–135
doi: 10.1016/j.chemosphere.2017.01.122
Sun R, Wu MH, Tang L, Li JJ, Qian ZQ, Han T, Gang Xu (2018) Perfluorinated compounds in surface water of Shanghai, China: source analysis and risk assessment. Ecotoxicol Environ Saf 149:88–95
doi: 10.1016/j.ecoenv.2017.11.012
Sutherland C, Krueger HO (2001) PFOS: a 96-hr toxicity test with the freshwater diatom (Navicula pelliculosa). Wildlife International, Ltd., Project Number 454A-112, EPA Docket AR226-1030a055
Thurston RV, Glifoil TA, Meyn EL, Zajdel RK, Aoki TI, Veith GD (1985) Comparative toxicity of ten organic chemicals to ten common aquatic species. Water Res 19:1145–1155
doi: 10.1016/0043-1354(85)90351-3
U.S. EPA (1998) Proposed category for persistent, bioaccumulative, and toxic chemicals. Fed Regist 63(192):53417–53423
U.S. EPA (2002) Revised draft hazard assesment of perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics risk Assessment Division, US Environmental Protection Agency, Washington, DC
UNEP (2009) Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty. http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/languages/en-US/Default.aspx . Accessed June 2019
UNEP (2015) Chemicals proposed for listing under the convention. http://chm.pops.int/TheConvention/ThePOPs/ChemicalsProposedforListing/tabid/2510/Default.aspx . Accessed June 2019
Wang XL, Tao S, Dawson RW, Xu FL (2002) Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area. Environ Res 90:201–206
doi: 10.1016/S0013-9351(02)00026-9
Wang T, Wang Y, Liao C, Cai Y, Jiang G (2009) Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants. Environ Sci Technol 43:5171–5175
doi: 10.1021/es900464a
Wang BB, Cao MH, Zhu H, Chen J, Wang LL, Liu GH, Gu XM, Lu XH (2013) Distribution of perfluorinated compounds in surface water from Hanjiang River in Wuhan, China. Chemosphere 93:468–473
doi: 10.1016/j.chemosphere.2013.06.014
Wang P, Lu YL, Wang TY, Zhu ZY, Li QF, Meng J, Su HQ, Johnson AC, Sweetman AJ (2016) Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: evidence from yearly and seasonal monitoring in Daling River Basin, China. Environ Pollut 218:1234–1244
doi: 10.1016/j.envpol.2016.08.079
Wheeler JR, Grist EP, Leung KM, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202
doi: 10.1016/S0025-326X(01)00327-7
Wu F, Meng W, Zhang R, Li H, Cao Y, Xu B, Feng C (2010) Aquatic life water quality criteria for nitrobenzene in fresh water. Res Environ Sci 24:1–10 (in Chinese)
Xie S, Wang T, Liu S, Jones KC, Sweetman AJ, Lu Y (2013) Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environ Int 52:1–8
doi: 10.1016/j.envint.2012.11.004
Xing L, Liu H, Zhang X, Hecker M, Giesy JP, Yu H (2014) A comparison of statistical methods for deriving freshwater quality criteria for the protection of aquatic organisms. Environ Sci Pollut Res 21:159–167
doi: 10.1007/s11356-013-1462-y
Yang LP, Zhu LY, Liu ZT (2011) Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere 83:806–814
doi: 10.1016/j.chemosphere.2011.02.075
Yoshiyuki I, Naoki H, Naoaki Y, Hidekazu M, Yasuyuki S, Erina K, Masanori O (2012) Unique physicochemical properties of perfluorinated compounds and their bioconcentration in common carp (Cyprinus carpio). Arch Environ Con Tox 62:672–680
doi: 10.1007/s00244-011-9730-7
Yu NY, Shi W, Zhang BB, Su GY, Feng JF, Zhang XW, Wei S, Yu HX (2013) Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. Environ Sci Technol 47:710–717
doi: 10.1021/es3037803
Zhang YH, Cao Y, Zhou TY, Wang YZ, Liu ZT (2013) Predicted non-effect concentrations for PFOS of environment in China. China Environ Sci 33:1670–1677 (in Chinese)
Zhou Z, Liang Y, Shi YL, Xu L, Cai YQ (2013) Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China. Environ Sci Technol 47:9249–9257
doi: 10.1021/es402120y