Growth and photosynthesis acclimated response of the cyanobacterium Fischerella sp. FS 18 exposed to extreme conditions: alkaline pH, limited irradiance, and carbon dioxide concentration.

Alkaline pH Cyanobacteria Extreme condition Fischerella sp. FS 18 Photosynthesis

Journal

Extremophiles : life under extreme conditions
ISSN: 1433-4909
Titre abrégé: Extremophiles
Pays: Germany
ID NLM: 9706854

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 08 07 2021
accepted: 06 09 2021
pubmed: 22 9 2021
medline: 12 11 2021
entrez: 21 9 2021
Statut: ppublish

Résumé

The true-branching heterocystous cyanobacterium Fischerella sp. FS 18 is widely distributed in paddy fields (North) and petroleum polluted soils (South) in Iran. This investigation tested the hypothesis that the cyanobacterium can acclimatize under the combined effect of extreme environmental conditions. Here, we analysed the physiological response of the cyanobacterium under extremely limited irradiance (2 μmol photon m

Identifiants

pubmed: 34545451
doi: 10.1007/s00792-021-01244-x
pii: 10.1007/s00792-021-01244-x
doi:

Substances chimiques

Chlorophyll 1406-65-1
Carbon Dioxide 142M471B3J
Chlorophyll A YF5Q9EJC8Y

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

493-500

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature.

Références

Abbasi B, Shokravi Sh, Golsefidi MAh, Sateiee A, Kiaei E (2019) Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65. Int J Algae. 29(1):40–58
Adir N, Bar-Zvi S, Harris D (2020) The amazing phycobilisome. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1861(4):148047
Ahmed F, Fakhruddin ANM (2018) A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environm Sci Natural Resour 11(3):1–7
Ahmed H, Pathak J, Sonkar PK, Ganesan V, Häder DP, Sinha RP (2021) Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling and its antioxidative potentials. 3 Biotech 11(1):1–23
Alcorta J, Vergara-Barros P, Antonaru LA, Alcamán-Arias ME, Nürnberg DJ, Díez B (2019) Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles 23(6):635–647
pubmed: 31512055
Amirlatifi F, Soltani N, Saadatmand S, Shokravi S, Dezfulian M (2013) Crude oil- induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. Int J Environm Res 7(4):1007–1014
Amirlatifi HS, Shokravi S, Sateei A, Golsefidi MA, Mahmoudjanlo M (2018) Samples of Cyanobacterium Calothrix sp. ISC 65 Collected from Oil Polluted Regions Respond to Combined Effects of Salinity, Extremely Low-Carbon Dioxide Concentration and Irradiance. Int J Algae 20(2):193–210
Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobactiria and microalgae. Physiol Plant 84(4):606–615
Beardall J (1991) Effects of photon flux density on the ‘C02-concentrating mechanism’of the cyanobacterium Anabaena variabilis. J Plankton Res 13(supp1):133–41
Bouazzara H, Benaceur F, Chaibi R, Boussebci I, Bruno L (2020) Combined effect of temperature, pH and salinity variation on the growth rate of Gloeocapsa sp. in batch culture method using Aiba and Ogawa medium. EurAsian J BioSci 14(2):7101–7109
Briand JF, Leboulanger C, Humbert JF, Bernard C, Dufour P (2004) Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, orglobalwarming? 1. J Phycol 40(2):231–238
Burns RA, MacDonald CD, McGinn PJ, Campbell DA (2005) inorganic carbon repletion disrupts photosynthetic acclimation to low temperature in the cyanobacterium synechococcus elongatus 1. J Phycol 41(2):322–334
Chittora D, Meena M, Barupal T, Swapnil P, Sharma K (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophy Rep 22:100737
Chris A, Zeeshan M, Abraham G, Prasad SM (2006) Proline accumulation in Cylindrospermum sp. Environ Exp Bot 57(1–2):154–159
Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. https://doi.org/10.4061/2011/941810
doi: 10.4061/2011/941810 pubmed: 21350672
Fraser JM, Tulk SE, Jeans JA, Campbell DA, Bibby TS, Cockshutt AM (2013) Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS One 8(3):e59861
pubmed: 23527279 pmcid: 3602374
Gan F, Zhang S, Rockwell N, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345(6202):1312–1317
pubmed: 25214622
Grigoryeva N, Chistyakova L (2020) Confocal laser scanning microscopy for spectroscopic studies of living photosynthetic cells. Color Detection UK, IntechOpen, pp 39–64
Hu C, Völler G, Süßmuth R, Dittmann E, Kehr JC (2015) Functional assessment of mycosporine-like amino acids in M icrocystis aeruginosa strain PCC 7806. Environ Microbiol 17(5):1548–1559
pubmed: 25059440
Hu C, Ludsin SA, Martin JF, Dittmann E, Lee J (2018) Mycosporine-like amino acids (MAAs)—producing Microcystis in Lake Erie: Development of a qPCR assay and insight into its ecology. Harmful Algae 77:1–10
pubmed: 30005796
Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44(36):12214–12228
pubmed: 16142920
Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131
Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Adv Biol Ecol Nitrogen Fix 2:24–48
Katoch M, Mazmouz R, Chau R, Pearson LA, Pickford R, Neilan BA (2016) Heterologous production of cyanobacterial mycosporine-like amino acids mycosporine- ornithine and mycosporine-lysine in Escherichia coli. Appl Environ Microbiol 82(20):6167–6173
pubmed: 27520810 pmcid: 5068148
Khazi MI, Demirel Z, Dalay MC (2018) Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J Appl Phycol 30(3):1513–1523
Klanchui A, Cheevadhanarak S, Prommeenate P, Meechai A (2017) Exploring components of the CO2-concentrating mechanism in alkaliphilic cyanobacteria through genome-based analysis. Comput Struct Biotechnol J 15:340–350
pubmed: 28652895 pmcid: 5472144
Kumar D, Kannaujiya VK, Jaiswal J, Sinha RP (2020) Effects of ultraviolet and photosynthetically active radiation on phycocyanin of habitat specific cyanobacteria. J Scient Res 64(1)
Li Y, Lin Y, Loughlin PC, Chen M (2014) Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Front Plant Sci 5:67
pubmed: 24616731 pmcid: 3934312
MacKenzie TD, Burns RA, Campbell DA (2004) Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant Physiol 136(2):3301–3312
pubmed: 15466225 pmcid: 523389
Mangan NM, Brenner MP (2014) Systems analysis of the CO2 concentrating mechanism in cyanobacteria. Elife 3:e02043
pmcid: 4027813
Mareš J, Hájek J, Urajová P, Kopecký J, Hrouzek P (2014) A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum. PLoS One 9(11):e111904
pubmed: 25369527 pmcid: 4219810
Müller C, Reuter W, Wehrmeyer W, Dau H, Senger H (1993) Adaptation of the photosynthetic apparatus of anacystis nidulans to irradiance and CO2-concentration. Botanica Acta 106(6):480–487
Munagamage T, Rathnayake IVN, Pathiratne A, Megharaj M (2020) Comparison of sensitivity of tropical freshwater microalgae to environmentally relevant concentrations of cadmium and hexavalent chromium in three types of growth media. Bull Environ Contam Toxicol 105(3):397–404
pubmed: 32747993
Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43(3):253–262
Poza-Carrión C, Fernández-Valiente E, Piñas FF, Leganés F (2001) Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. J Plant Physiol 158(11):1455–1461
Radway JC, Weissman JC, Wilde EW, Benemann JR (1992) Exposure of Fischerella [Mastigocladus] to high and low temperature extremes: strain evaluation for a thermal mitigation process. J Appl Phycol 4(1):67–77
Ramírez M, Hernández-Mariné M, Mateo P, Berrendero E, Roldán M (2011) Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea 11(1):73–86
Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121(2):111–124
Shokravi S, Soltani N (2011) Acclimation of the Hapalosiphon sp. (Cyanoprokaryota) to Combination Effects of Dissolved Inorganic Carbon and pH at Extremely Limited Irradiance. Int j Algae 13(4):379–391
Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529
pubmed: 27148218 pmcid: 4838734
Soltani N, Khavari-Nejad RA, Yazdi MT, Shokravi S, Fernández-Valiente E (2006) Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH values. World J Microbiol Biotechnol 22(6):571–576
Soltani N, Siahbalaie R, Shokravi S (2010) A New Description of Fischerella Ambigua (Näg.) Gom.− a Multidisciplinary Approach. Int J Algae 12(1):19–36
Sugiura K, Itoh S (2012) Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. Plant Cell Physiol 53(8):1492–1506
pubmed: 22739509
Tang EP, Vincent WF (1999) Strategies of thermal adaptation by high-latitude cyanobacteria. New Phytol 142(2):315–323
Tiwari S, Mchanty P (1996) Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynth Res 50(3):243–256
pubmed: 24271963
Valiente EF, Leganes F (1990) Regulatory effect of pH and incident irradiance on the levels of nitrogenase activity in the cyanobacterium Nostoc UAM 205. J Plant Physiol 135(5):623–627
Vermaas WF, Timlin JA, Jones HD, Sinclair MB, Nieman LT, Hamad SW, Melgaard DK, Haaland DM (2008) In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci 105(10):4050–4055
pubmed: 18316743 pmcid: 2268818
Watanabe M, Semchonok DA, Webber-Birungi MT, Ehira S, Kondo K, Narikawa R, Ohmori M, Boekema EJ, Ikeuchi M (2014) Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria. Proc Natl Acad Sci 111(7):2512–2517
pubmed: 24550276 pmcid: 3932850
Young EB, Beardall J (2005) Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Can J Bot 83(7):917–928
Zhao J, Brand JJ (1989) Specific bleaching of phycobiliproteins from cyanobacteria and red algae at high temperature in vivo. Arch Microbiol 152(5):447–452
Zorz JK, Allanach JR, Murphy CD, Roodvoets MS, Campbell DA, Cockshutt AM (2015) The RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. Life 5(1):403–417
pubmed: 25658887 pmcid: 4390859

Auteurs

Shadman Shokravi (S)

Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran. Shadmanshokravi@yahoo.com.

Nadia Bahavar (N)

Plant Physiology Laboratory, Bioscience Faculty, Universidad Autónoma de Barcelona (UAB), 08193, Belletarra, Spain. nbahavar@gmail.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Humans Pulmonary Disease, Chronic Obstructive Exercise Tolerance Male Aged

Classifications MeSH