A Dual-emitting Two-dimensional Nickel-based Metal-organic Framework Nanosheets: Eu
Aqueous solution
Biothiols
Metal-Organic frameworks
Nanosheets
Ratiometric fluorescent sensing
Journal
Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
09
08
2021
accepted:
08
09
2021
pubmed:
22
9
2021
medline:
4
2
2022
entrez:
21
9
2021
Statut:
ppublish
Résumé
Using two-dimensional (2D) nickel-based metal organic framework (Ni-MOF) nanosheets as a matrix, Eu
Identifiants
pubmed: 34546469
doi: 10.1007/s10895-021-02826-w
pii: 10.1007/s10895-021-02826-w
doi:
Substances chimiques
Fluorescent Dyes
0
Metal-Organic Frameworks
0
Solutions
0
Sulfhydryl Compounds
0
Silver
3M4G523W1G
Europium
444W947O8O
Nickel
7OV03QG267
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1947-1957Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. https://doi.org/10.1016/j.canlet.2003.11.028
doi: 10.1016/j.canlet.2003.11.028
pubmed: 15142672
Lugrin J, Rosenblatt-Velin N, Parapanov R et al (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230. https://doi.org/10.1515/hsz-2013-0241
doi: 10.1515/hsz-2013-0241
pubmed: 24127541
Kleinman WA, Richie JP (2000) Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol 60:19–29. https://doi.org/10.1016/s0006-2952(00)00293-8
doi: 10.1016/s0006-2952(00)00293-8
pubmed: 10807941
Su D, Teoh CL, Sahu S et al (2014) Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials 35:6078–6085. https://doi.org/10.1016/j.biomaterials.2014.04.035
doi: 10.1016/j.biomaterials.2014.04.035
pubmed: 24794926
Xu J, Yu H, Hu Y et al (2016) A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens Bioelectron 75:1–7. https://doi.org/10.1016/j.bios.2015.08.007
doi: 10.1016/j.bios.2015.08.007
pubmed: 26278044
Zhang S, Wu D, Jiang X et al (2019) A novel fluorescent probe with one-excitation and dual-emission for selective and simultaneous detection of Glutathione and Arginine in NIR and blue regions. Sens Actuators B 290:691–697. https://doi.org/10.1016/j.snb.2019.04.028
doi: 10.1016/j.snb.2019.04.028
Ivanov AV, Bulgakova PO, Virus ED et al (2017) Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis 38:2646–2653. https://doi.org/10.1002/elps.201700133
doi: 10.1002/elps.201700133
pubmed: 28681932
Michelet F, Gueguen R, Leroy P et al (1995) Blood and plasma glutathione measured in healthy subjects by HPLC: Relation to sex, aging, biological variables, and life habits. Clin Chem 41:1509–1517
doi: 10.1093/clinchem/41.10.1509
Xiao HM, Wang X, Liao QL et al (2019) Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry. Analyst 144:6578–6585. https://doi.org/10.1039/c9an01566c
doi: 10.1039/c9an01566c
pubmed: 31596276
Mu S, Yang Y (2016) Recognition of glutathione based on its electrocatalytic oxidation on the bare fluorine doped tin oxide electrode. J Electroanal Chem 780:12–18. https://doi.org/10.1016/j.jelechem.2016.08.038
doi: 10.1016/j.jelechem.2016.08.038
Mu S, Shi Q (2016) Photoelectrochemical properties of bare fluorine doped tin oxide and its electrocatalysis and photoelectrocatalysis toward cysteine oxidation. Electrochim Acta 195:59–67. https://doi.org/10.1016/j.electacta.2016.02.139
doi: 10.1016/j.electacta.2016.02.139
Jung HS, Chen X, Kim JS et al (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031. https://doi.org/10.1039/c3cs60024f
doi: 10.1039/c3cs60024f
pubmed: 23689799
Sun Y, Zuo T, Guo F et al (2017) Perylene dye-functionalized silver nanoparticles serving as pH-dependent metal sensor systems. RSC Adv 7:24215–24220. https://doi.org/10.1039/c7ra03264a
doi: 10.1039/c7ra03264a
Li Y, Feng J, Huang Y et al (2020) Upconverting ion-selective nanoparticles for the imaging of intracellular calcium ions. Analyst 145:4768–4771. https://doi.org/10.1039/d0an00454e
doi: 10.1039/d0an00454e
pubmed: 32538398
Xu Q, Wei HP, Hu XY (2013) Glutathione detection based on ZnS quantum-dot-based OFF-ON fluorescent probe. Chin J Anal Chem 41:1102–1106. https://doi.org/10.3724/sp.J.1096.2013.21154
doi: 10.3724/sp.J.1096.2013.21154
Shu Y, Gao JL, Chen JY et al (2021) A near-infrared fluorescent sensor based on the architecture of low-toxic Ag
doi: 10.1016/j.talanta.2020.121475
Furukawa H, Cordova KE, O’keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444
doi: 10.1126/science.1230444
Cui YJ, Yue YF, Qian GD et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162. https://doi.org/10.1021/cr200101d
doi: 10.1021/cr200101d
pubmed: 21688849
Shu Y, Ye Q, Dai T et al (2021) Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens 6:641–658. https://doi.org/10.1021/acssensors.0c02562
doi: 10.1021/acssensors.0c02562
pubmed: 33571406
Yan B (2017) Lanthanide-Functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc Chem Res 50:2789–2798. https://doi.org/10.1021/acs.accounts.7b00387
doi: 10.1021/acs.accounts.7b00387
pubmed: 28984437
Talapin DV, Rogach AL, Kornowski A et al (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine – trioctylphosphine oxide – trioctylphospine mixture. Nano Lett 1:207–211. https://doi.org/10.1021/nl0155126
doi: 10.1021/nl0155126
Dong MJ, Zhao M, Ou S et al (2014) A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. Angew Chem Int Edit 53:1575–1579. https://doi.org/10.1002/anie.201307331
doi: 10.1002/anie.201307331
Chen R, Zhang J, Chelora J et al (2017) Ruthenium(II) complex incorporated UiO-67 metal-organic framework nanoparticles for enhanced two-photon fluorescence imaging and photodynamic cancer therapy. ACS Appl Mater Interfaces 9:5699–5708. https://doi.org/10.1021/acsami.6b12469
doi: 10.1021/acsami.6b12469
pubmed: 28121418
Lustig WP, Mukherjee S, Rudd ND et al (2017) Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 46:3242–3285. https://doi.org/10.1039/c6cs00930a
doi: 10.1039/c6cs00930a
pubmed: 28462954
Zhang J, Huang Y, Yue D et al (2018) A luminescent turn-up metal-organic framework sensor for tryptophan based on singlet-singlet Forster energy transfer. J Mater Chem B 6:5174–5180. https://doi.org/10.1039/c8tb01592a
doi: 10.1039/c8tb01592a
pubmed: 32254544
Yan B (2021) Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 8:201–233. https://doi.org/10.1039/d0qi01153c
doi: 10.1039/d0qi01153c
Hao JN, Yan B (2016) A dual-emitting 4d-4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. Nanoscale 8:12047–12053. https://doi.org/10.1039/c6nr02446g
doi: 10.1039/c6nr02446g
pubmed: 27243359
Bunzli JC, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077. https://doi.org/10.1039/b406082m
doi: 10.1039/b406082m
pubmed: 16284671
Zhou Y, Yan B (2015) Ratiometric detection of temperature using responsive dual-emissive MOF hybrids. J Mater Chem C 3:9353–9358. https://doi.org/10.1039/c5tc02004b
doi: 10.1039/c5tc02004b
Zhang Y, Li B, Ma H et al (2016) Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 85:287–293. https://doi.org/10.1016/j.bios.2016.05.020
doi: 10.1016/j.bios.2016.05.020
pubmed: 27183278
Yang J, Xiong P, Zheng C et al (2014) Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2:16640–16644. https://doi.org/10.1039/c4ta04140b
doi: 10.1039/c4ta04140b
Yang J, Zheng C, Xiong P et al (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2:19005–19010. https://doi.org/10.1039/c4ta04346d
doi: 10.1039/c4ta04346d
Zhang X, Fang L, Jiang K et al (2019) Nanoscale fluorescent metal-organic framework composites as a logic platform for potential diagnosis of asthma. Biosens Bioelectron 130:65–72. https://doi.org/10.1016/j.bios.2019.01.011
doi: 10.1016/j.bios.2019.01.011
pubmed: 30731347
Decadt R, Van Hecke K, Depla D et al (2012) Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem 51:11623–11634. https://doi.org/10.1021/ic301544q
doi: 10.1021/ic301544q
pubmed: 23078525
Rocha J, Carlos LD, Paz FA et al (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940. https://doi.org/10.1039/c0cs00130a
doi: 10.1039/c0cs00130a
pubmed: 21180775
Sergeeva NN, Donnier-Marechal M, Vaz G et al (2011) Synthesis and evaluation of the europium(III) and zinc(II) complexes as luminescent bioprobes in high content cell-imaging analysis. J Inorg Biochem 105:1589–1595 https://doi.org/10.1016/j.jinorgbio.2011.08.023
doi: 10.1016/j.jinorgbio.2011.08.023
pubmed: 22071083
Gutiérrez M, Martín C, Souza BE et al (2020) Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Appl Mater Today 21. https://doi.org/10.1016/j.apmt.2020.100817
Reineke TM, Eddaoudi M, Fehr M et al (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657. https://doi.org/10.1021/ja983577d
doi: 10.1021/ja983577d
Sun D, Cao R, Bi W et al (2004) Syntheses and characterizations of a series of silver-carboxylate polymers. Inorg Chim Acta 357:991–1001. https://doi.org/10.1016/j.ica.2003.10.010
doi: 10.1016/j.ica.2003.10.010
Dong XY, Huang HL, Wang JY et al (2018) A flexible fluorescent SCC-MOF for switchable molecule identification and temperature display. Chem Mat 30:2160–2167. https://doi.org/10.1021/acs.chemmater.8b00611
doi: 10.1021/acs.chemmater.8b00611
Ma X, Guo Q, Xie Y et al (2016) Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers. Chem Phys Lett 652:148–151. https://doi.org/10.1016/j.cplett.2016.04.004
doi: 10.1016/j.cplett.2016.04.004
Darroudi M, Ahmad MB, Shameli K et al (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624. https://doi.org/10.1016/j.solidstatesciences.2009.06.016
doi: 10.1016/j.solidstatesciences.2009.06.016