Association between hyperpyrexia and poststroke outcomes in patients with recanalization after mechanical thrombectomy: a retrospective cohort study.


Journal

BMC neurology
ISSN: 1471-2377
Titre abrégé: BMC Neurol
Pays: England
ID NLM: 100968555

Informations de publication

Date de publication:
21 Sep 2021
Historique:
received: 07 12 2020
accepted: 14 09 2021
entrez: 22 9 2021
pubmed: 23 9 2021
medline: 16 10 2021
Statut: epublish

Résumé

Limited data are available for evaluating the relationship between the prognosis and body temperature (BT) in patients treated with mechanical thrombectomy (MT), especially in those with successful recanalization. We aimed to explore the prognostic value of BT in predicting outcomes of stroke recovery at 3 months poststroke. We retrospectively analyzed the relationship among BT levels as a continuous variable, with fever (BT ≥ 37.5℃) as a binary variable, and obtained several outcomes of interest. Subjects were stratified according to successful recanalization (thrombolysis in cerebral infarction scores of 2b-3) following MT. Functional independence was defined as a modified Rankin scale (mRS) score of 0-2. In total, 258 patients were included. The proportion of patients with functional independence was significantly lower among patients with BT ≥ 37.5℃ than among those with BT < 37.5 °C (45.3 % versus 23.0 %; P < 0.001). In the multivariate analysis, hyperpyrexia (especially BT ≥ 38 °C) was significantly associated with poor 3-month outcomes in patients treated with MT. Subgroup analysis was conducted by comparing the successful recanalization group with the non-recanalization group, showing that BT ≥ 37.5 °C was associated with a significantly lower proportion of functional independence in the recanalized patients. Besides, the Kaplan-Meier model showed that the fever group had significantly lower survival rates than the non-fever group during the 3-month follow-up. In patients treated with MT, hyperpyrexia is an independent predictor of poststroke outcomes at 3 months, particularly in those with successful recanalization.

Sections du résumé

BACKGROUND BACKGROUND
Limited data are available for evaluating the relationship between the prognosis and body temperature (BT) in patients treated with mechanical thrombectomy (MT), especially in those with successful recanalization. We aimed to explore the prognostic value of BT in predicting outcomes of stroke recovery at 3 months poststroke.
METHODS METHODS
We retrospectively analyzed the relationship among BT levels as a continuous variable, with fever (BT ≥ 37.5℃) as a binary variable, and obtained several outcomes of interest. Subjects were stratified according to successful recanalization (thrombolysis in cerebral infarction scores of 2b-3) following MT. Functional independence was defined as a modified Rankin scale (mRS) score of 0-2.
RESULTS RESULTS
In total, 258 patients were included. The proportion of patients with functional independence was significantly lower among patients with BT ≥ 37.5℃ than among those with BT < 37.5 °C (45.3 % versus 23.0 %; P < 0.001). In the multivariate analysis, hyperpyrexia (especially BT ≥ 38 °C) was significantly associated with poor 3-month outcomes in patients treated with MT. Subgroup analysis was conducted by comparing the successful recanalization group with the non-recanalization group, showing that BT ≥ 37.5 °C was associated with a significantly lower proportion of functional independence in the recanalized patients. Besides, the Kaplan-Meier model showed that the fever group had significantly lower survival rates than the non-fever group during the 3-month follow-up.
CONCLUSIONS CONCLUSIONS
In patients treated with MT, hyperpyrexia is an independent predictor of poststroke outcomes at 3 months, particularly in those with successful recanalization.

Identifiants

pubmed: 34548043
doi: 10.1186/s12883-021-02400-8
pii: 10.1186/s12883-021-02400-8
pmc: PMC8454168
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

365

Subventions

Organisme : National Key R&D Program of China
ID : 2018YFC1311400 and 2018YFC1311401
Organisme : Science &Technology Department of Sichuan Province
ID : 2020YFS0155
Organisme : West China Nursing Discipline Special Fund Project, Sichuan University
ID : HXHL20021

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165260.
doi: 10.1016/j.bbadis.2018.09.012
Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F. THRACE investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15(11):1138–47.
doi: 10.1016/S1474-4422(16)30177-6
Yang P, Zhang Y, Zhang L, Zhang Y, Treurniet KM, Chen W, et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N Engl J Med. 2020;382(21):1981–93.
doi: 10.1056/NEJMoa2001123
Turk AS 3rd, Siddiqui A, Fifi JT, De Leacy RA, Fiorella DJ, Gu E, et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial. Lancet. 2019;393(10175):998–1008.
doi: 10.1016/S0140-6736(19)30297-1
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018;49(3):46–110.
doi: 10.1161/STR.0000000000000158
Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.
doi: 10.1016/S0140-6736(16)00163-X
Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.
doi: 10.1056/NEJMoa1414905
Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, et al. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. Intensive Care Med. 2015;41(5):823–32.
doi: 10.1007/s00134-015-3676-6
van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain. 2007;130:3063–74.
doi: 10.1093/brain/awm083
Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, et al. COOLIST (Cooling for Ischemic Stroke Trial): A Multicenter, Open, Randomized, Phase II, Clinical Trial. Stroke. 2017;48(1):219–21.
doi: 10.1161/STROKEAHA.116.014757
Kim SH, Saver JL. Initial body temperature in ischemic stroke: nonpotentiation of tissue-type plasminogen activator benefit and inverse association with severity. Stroke. 2015;46(1):132–6.
doi: 10.1161/STROKEAHA.114.006107
Tiainen M, Meretoja A, Strbian D, Suvanto J, Curtze S, Lindsberg PJ, et al. Body temperature, blood infection parameters, and outcome of thrombolysis-treated ischemic stroke patients. Int J Stroke. 2013;8(8):632–8.
doi: 10.1111/ijs.12039
Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, et al. Tenecteplase versus Alteplase before Thrombectomy for Ischemic Stroke. N Engl J Med. 2018;378(17):1573–82.
doi: 10.1056/NEJMoa1716405
Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41(10):2254–8.
doi: 10.1161/STROKEAHA.110.592535
Jang WJ, Yang JH, Song YB, Chun WJ, Oh JH, Park YH, et al. Clinical Significance of Postinfarct Fever in ST-Segment Elevation Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study. J Am Heart Assoc. 2017;6(4):005687.
doi: 10.1161/JAHA.117.005687
Goyal N, Tsivgoulis G, Iftikhar S, Khorchid Y, Fawad Ishfaq M, Doss VT, et al. Admission systolic blood pressure and outcomes in large vessel occlusion strokes treated with endovascular treatment. J Neurointerv Surg. 2017;9(5):451–4.
doi: 10.1136/neurintsurg-2016-012386
Elijovich L, Goyal N, Mainali S, Hoit D, Arthur AS, Whitehead M, Choudhri AF. CTA collateral score predicts infarct volume and clinical outcome after endovascular therapy for acute ischemic stroke: a retrospective chart review. J Neurointerv Surg. 2016;8(6):559–62.
doi: 10.1136/neurintsurg-2015-011731
Axelrod YK, Diringer MN. Temperature management in acute neurologic disorders. Neurol Clin. 2008;26(2):585–603.
doi: 10.1016/j.ncl.2008.02.005
Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355(9216):1670–4.
doi: 10.1016/S0140-6736(00)02237-6
Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke Stroke. 2003;34(8):e109-37.
pubmed: 12869717
Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.
doi: 10.1056/NEJMoa0804656
Fu J, Zhou Y, Li Q, Zhong G, Zhang S, Zhang R, et al. Perfusion Changes of Unexplained Early Neurological Deterioration After Reperfusion Therapy. Transl Stroke Res. 2020;11(2):195–203.
doi: 10.1007/s12975-019-00723-w
Yu WM, Abdul-Rahim AH, Cameron AC, Kõrv J, Sevcik P, Toni D, et al. The Incidence and Associated Factors of Early Neurological Deterioration After Thrombolysis: Results From SITS Registry. Stroke. 2020;51(9):2705–14.
doi: 10.1161/STROKEAHA.119.028287
Choi KH, Kim JH, Kang KW, Kim JT, Choi SM, Lee SH, et al. HbA1c (Glycated Hemoglobin) Levels and Clinical Outcome Post-Mechanical Thrombectomy in Patients With Large Vessel Occlusion. Stroke. 2018: STROKEAHA118021598.
Dehkharghani S, Bowen M, Haussen DC, Gleason T, Prater A, Cai Q, et al. Body Temperature Modulates Infarction Growth following Endovascular Reperfusion. AJNR Am J Neuroradiol. 2017;38(1):46–51.
doi: 10.3174/ajnr.A4969
Dehkharghani S, Yaghi S, Bowen MT, Pisani L, Scher E, Haussen DC, Nogueira RG. Mild fever as a catalyst for consumption of the ischaemic penumbra despite endovascular reperfusion. Brain Commun. 2020;2(2):fcaa116.
doi: 10.1093/braincomms/fcaa116
Diprose WK, Liem B, Wang MTM, Sutcliffe JA, Brew S, Caldwell JR, et al. Impact of Body Temperature Before and After Endovascular Thrombectomy for Large Vessel Occlusion Stroke. Stroke. 2020;51(4):1218–25.
doi: 10.1161/STROKEAHA.119.028160
Krieger DW, Yenari MA. Therapeutic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke. 2004;35(6):1482–9.
doi: 10.1161/01.STR.0000126118.44249.5c
He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H. Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke. 1999;30:2743–51.
doi: 10.1161/01.STR.30.12.2743
Leira R, Rodriguez-Yanez M, Castellanos M, Blanco M, Nombela F, Sobrino T, et al. Hyperthermia is a surrogate marker of inflammation mediated cause of brain damage in acute ischemic stroke. J Int Med. 2006;260:343–9.
doi: 10.1111/j.1365-2796.2006.01694.x
Emsley HCA, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit Care. 2008;9:125–38.
doi: 10.1007/s12028-007-9035-x
Georgilis K, Promaritoglou A, Dafni U, Bassiakos Y, Vemmos K. Aetiology of fever in patients with acute stroke. J Intern Med. 1999;246:203–9.
doi: 10.1046/j.1365-2796.1999.00539.x
Nowak K, Derbisz J, Pęksa J, Łasocha B, Brzegowy P, Slowik J, et al. Post-stroke infection in acute ischemic stroke patients treated with mechanical thrombectomy does not affect long-term outcome. Postepy Kardiol Interwencyjnej. 2020;16(4):452–9.
pubmed: 33598019 pmcid: 7863840
Hetze S, Engel O, Römer C, Mueller S, Dirnagl U, Meisel C, et al. Superiority of preventive antibiotic treatment compared with standard treatment of poststroke pneumonia in experimental stroke: a bed to bench approach. J Cereb Blood Flow Metab. 2013;33(6):846–54.
doi: 10.1038/jcbfm.2013.6
Kalra L, Irshad S, Hodsoll J, Simpson M, Gulliford M, Smithard D, et al. Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): a prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial. Lancet. 2015;386(10006):1835–44.
doi: 10.1016/S0140-6736(15)00126-9
Talke PO, Sharma D, Heyer EJ, Bergese SD, Blackham KA, Stevens RD. Republished: Society for Neuroscience in Anesthesiology and Critical Care expert consensus statement: Anesthetic management of endovascular treatment for acute ischemic stroke. Stroke. 2014;45(8):e138–50.
doi: 10.1161/STROKEAHA.113.003412
Sharma D, Rasmussen M, Han R, Whalin MK, Davis M, Kofke WA, et al. Anesthetic Management of Endovascular Treatment of Acute Ischemic Stroke During COVID-19 Pandemic: Consensus Statement From Society for Neuroscience in Anesthesiology & Critical Care (SNACC): Endorsed by Society of Vascular & Interventional Neurology (SVIN), Society of NeuroInterventional Surgery (SNIS), Neurocritical Care Society (NCS), European Society of Minimally Invasive Neurological Therapy (ESMINT) and American Association of Neurological Surgeons (AANS) and Congress of Neurological Surgeons (CNS) Cerebrovascular Section. J Neurosurg Anesthesiol. 2020;32(3):193–201.
doi: 10.1097/ANA.0000000000000688

Auteurs

Man Chen (M)

Department of Neurology, West China Hospital, Sichuan University, 610041, Chengdu, China.

Jinghuan Fang (J)

Department of Neurology, West China Hospital, Sichuan University, 610041, Chengdu, China.

Xintong Wu (X)

Department of Neurology, West China Hospital, Sichuan University, 610041, Chengdu, China.

Qin Liu (Q)

Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, 610041, Chengdu, China.

Ling Feng (L)

Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, 610041, Chengdu, China. fengling216@163.com.

Li He (L)

Department of Neurology, West China Hospital, Sichuan University, 610041, Chengdu, China. heli2003new@126.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH