Episodic transport of discrete magma batches beneath Aso volcano.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 09 2021
21 09 2021
Historique:
received:
18
05
2021
accepted:
01
09
2021
entrez:
22
9
2021
pubmed:
23
9
2021
medline:
23
9
2021
Statut:
epublish
Résumé
Magma ascent, storage, and discharge in the trans-crustal magmatic system are keys to long-term volcanic output and short-term eruption dynamics. How a distinct magma batch transports from a deep reservoir(s) to a pre-eruptive storage pool with eruptible magma remains elusive. Here we show that repetitive very-long-period signals (VLPs) beneath the Aso volcano are preceded by a short-lived (~50-100 s), synchronous deformation event ~3 km apart from the VLP source. Source mechanism of a major volumetric component (~50-440 m
Identifiants
pubmed: 34548495
doi: 10.1038/s41467-021-25883-y
pii: 10.1038/s41467-021-25883-y
pmc: PMC8455576
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5555Informations de copyright
© 2021. The Author(s).
Références
Rubin, A. M. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287–336 (1995).
doi: 10.1146/annurev.ea.23.050195.001443
Watanabe, T., Koyaguchi, T. & Seno, T. Tectonic stress controls on ascent and emplacement of magmas. J. Volcanol. Geotherm. Res. 91, 65–78 (1999).
doi: 10.1016/S0377-0273(99)00054-2
Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).
pubmed: 28336610
doi: 10.1126/science.aag3055
Edmonds, M., Cashman, K. V., Holness, M. & Jackson, M. Architecture and dynamics of magma reservoirs. Philos. Trans. R. Soc. A. 377, 20180298 (2019).
doi: 10.1098/rsta.2018.0298
de Maisonneuve, C. B., Forni, F. & Bachmann, O. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions–a generalizable model? Earth-Sci. Rev. 218, 103684 (2021).
Miyoshi, M. et al. Genetic relationship between post-caldera and caldera-forming magmas from Aso volcano, SW Japan: constraints from Sr isotope and trace element compositions. J. Mineral. Petrol. Sci. 106, 114–119 (2011).
doi: 10.2465/jmps.101021b
Petrelli, M. & Zellmer, G. F. Rates and timescales of magma transfer, storage, emplacement, and eruption. Dyn. Magma Evol. 1–41 (2020).
Barth, A. et al. Magma decompression rate correlates with explosivity at basaltic volcanoes—constraints from water diffusion in olivine. J. Volcanol. Geotherm. Res. 387, 106664 (2019).
doi: 10.1016/j.jvolgeores.2019.106664
Costa, F., Shea, T. & Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 1, 201–214 (2020).
doi: 10.1038/s43017-020-0038-x
Rutherford, M. J. Magma ascent rates. Rev. Mineral. Geochem. 69, 241–271 (2008).
doi: 10.2138/rmg.2008.69.7
Rivalta, E., Taisne, B., Bunger, A. & Katz, R. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).
doi: 10.1016/j.tecto.2014.10.003
Dzurisin, D. Volcano Deformation: New Geodetic Monitoring Techniques (Springer Science & Business Media, 2006).
Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).
Biggs, J. & Pritchard, M. E. Global volcano monitoring: what does it mean when volcanoes deform? Elements 13, 17–22 (2017).
doi: 10.2113/gselements.13.1.17
Linde, A. T., Agustsson, K., Sacks, I. S. & Stefansson, R. Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365, 737–740 (1993).
doi: 10.1038/365737a0
Ripepe, M. et al. Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions. Nat. Commun. 12, 1–8 (2021).
doi: 10.1038/s41467-021-21722-2
Kawakatsu, H. & Yamamoto, M. Treatise on Geophysics Vol. 4, 389–420 (Elsevier, 2007).
Chouet, B. A. & Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J. Volcanol. Geotherm. Res. 252, 108–175 (2013).
doi: 10.1016/j.jvolgeores.2012.11.013
Dawson, P. & Chouet, B. Characterization of very-long-period seismicity accompanying summit activity at Kīlauea Volcano, Hawai’i: 2007–2013. J. Volcanol. Geotherm. Res. 278–279, 59–85 (2014).
doi: 10.1016/j.jvolgeores.2014.04.010
Kobayashi, T., Ohminato, T., Ida, Y. & Fujita, E. Intermittent inflations recorded by broadband seismometers prior to caldera formation at Miyake-jima volcano in 2000. Earth Planet. Sci. Lett. 357, 145–151 (2012).
doi: 10.1016/j.epsl.2012.09.039
Saito, G., Ishizuka, O., Ishizuka, Y., Hoshizumi, H. & Miyagi, I. Petrological characteristics and volatile content of magma of the 1979, 1989, and 2014 eruptions of Nakadake, Aso volcano, Japan. Earth Planets Space 70, 197 (2018).
doi: 10.1186/s40623-018-0970-x
Ono, K., Watanabe, K., Hoshizumi, H. & Ikebe, S. Ash eruption of the Naka-dake crater, Aso volcano, southwestern Japan. J. Volcanol. Geotherm. Res. 66, 137–148 (1995).
doi: 10.1016/0377-0273(94)00061-K
Miyabuchi, Y. A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan. Sediment. Geol. 220, 169–189 (2009).
doi: 10.1016/j.sedgeo.2009.04.018
Hase, H., Hashimoto, T., Sakanaka, S., Kanda, W. & Tanaka, Y. Hydrothermal system beneath Aso volcano as inferred from self-potential mapping and resistivity structure. J. Volcanol. Geotherm. Res. 143, 259–277 (2005).
doi: 10.1016/j.jvolgeores.2004.12.005
Hata, M. et al. Three-dimensional electrical resistivity modeling to elucidate the crustal magma supply system beneath Aso caldera, Japan. J. Geophys. Res. 123, 6334–6346 (2018).
Kanda, W., Utsugi, M., Takakura, S. & Inoue, H. Hydrothermal system of the active crater of Aso volcano (Japan) inferred from a three-dimensional resistivity structure model. Earth Planets Space 71, 37 (2019).
doi: 10.1186/s40623-019-1017-7
Sassa, K. Geophysical studies on the volcano Aso. (Part 1: Volcanic micro-tremors and eruptive-earthquakes). Mem. Coll. Sci., Kyoto Imp. Univ. Series A 255–293 (1935).
Kaneshima, S. et al. Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband seismic observations. Science 273, 643–645 (1996).
doi: 10.1126/science.273.5275.643
Yamamoto, M. et al. Detection of a crack-like conduit beneath the active crater at Aso volcano Japan. Geophys. Res. Lett. 26, 3677–3680 (1999).
doi: 10.1029/1999GL005395
Kawakatsu, H. et al. Aso94: Aso seismic observation with broadband instruments. J. Volcanol. Geotherm. Res. 101, 129–154 (2000).
doi: 10.1016/S0377-0273(00)00166-9
Legrand, D., Kaneshima, S. & Kawakatsu, H. Moment tensor analysis of near-field broadband waveforms observed at Aso volcano, Japan. J. Volcanol. Geotherm. Res. 101, 155–169 (2000).
doi: 10.1016/S0377-0273(00)00167-0
Niu, J. & Song, T.-R. A. Real-time and in-situ assessment of conduit permeability through diverse long-period tremors beneath Aso volcano, Japan. J. Volcanol. Geotherm. Res. 401, 106964 (2020).
doi: 10.1016/j.jvolgeores.2020.106964
Japan Meterological Agency. Aso volcano monthly activity reports, October 2016. (2016).
Tanada, T. et al. NIED’s V-net, the fundamental volcano observation network in Japan. JDR 12, 926–931 (2017).
doi: 10.20965/jdr.2017.p0926
Turin, G. An introduction to matched filters. IEEE Trans. Inform. Theory 6, 311–329 (1960).
doi: 10.1109/TIT.1960.1057571
Efron, B. & Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 37, 36–48 (1983).
Miyabuchi, Y. et al. The October 7–8, 2016 eruptions of Nakadake crater, Aso Volcano, Japan and their deposits. in Japan geoscience union-American geophysical union joint meeting. Chiba, Japan, SVC47-11 vol. 22 (2017).
Mori, T., Sudo, Y., Tsutsui, T. & Yoshikawa, S. Characteristics of isolated hybrid tremor (HBT) during a calm activity period at Aso Volcano. Bull. Volcanol. 70, 1031–1042 (2008).
doi: 10.1007/s00445-007-0185-7
Fukuda, J. & Johnson, K. M. Mixed linear—non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters. Geophys. J. Int. 181, 1441–1458 (2010).
Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).
doi: 10.1785/BSSA0820021018
Kaneko, K., Kamata, H., Koyaguchi, T., Yoshikawa, M. & Furukawa, K. Repeated large-scale eruptions from a single compositionally stratified magma chamber: an example from Aso volcano, Southwest Japan. J. Volcanol. Geotherm. Res. 167, 160–180 (2007).
doi: 10.1016/j.jvolgeores.2007.05.002
Ishibashi, H., Suwa, Y., Miyoshi, M., Yasuda, A. & Hokanishi, N. Amphibole–melt disequilibrium in silicic melt of the Aso-4 caldera-forming eruption at Aso volcano. SW Jpn. Earth Planets Space 70, 137 (2018).
doi: 10.1186/s40623-018-0907-4
Kawaguchi, M. et al. Persistent gas emission originating from a deep basaltic magma reservoir of an active volcano: the case of Aso volcano, Japan. Contributions Mineral. Petrol. 176, 1–24 (2021).
doi: 10.1007/s00410-020-01761-6
Miyoshi, M. et al. K–Ar ages determined for post-caldera volcanic products from Aso volcano, central Kyushu, Japan. J. Volcanol. Geotherm. Res. 229–230, 64–73 (2012).
doi: 10.1016/j.jvolgeores.2012.04.003
Sudo, Y., Tsutsui, T. & Nakaboh, M. Ground deformation and magma reservoir at Aso volcano: location of deflation source derived from long-term geodetic surveys (In Japanese). Bull. Volcanol. Soc. Jpn. 51, 291–309 (2006).
Ohkura, S., Yoshikawa, S., Inoue, H., Utsugi, M. & Kagiyama, T. Leveling in Aso (September-October 2008): Aso research report 2009 (report in Japanese). (2009).
Sudo, Y. & Kong, L. Three-dimensional seismic velocity structure beneath Aso volcano, Kyushu, Japan. Bull. Volcanol. 63, 326–344 (2001).
doi: 10.1007/s004450100145
Tsutsui, T. & Sudo, Y. Seismic reflectors beneath the central cones of Aso Volcano, Kyushu, Japan. J. Volcanol. Geotherm. Res. 131, 33–58 (2004).
doi: 10.1016/S0377-0273(03)00315-9
Matsushima, N. et al. Magmatic–hydrothermal system of Aso Volcano, Japan, inferred from electrical resistivity structures. Earth, Planets Space 72, 1–20 (2020).
doi: 10.1186/s40623-020-01180-8
Okubo, Y. & Shibuya, A. Thermal and crustal structure of the Aso volcano and surrounding regions constrained by gravity and magnetic data, Japan. J. Volcanol. Geotherm. Res. 55, 337–350 (1993).
doi: 10.1016/0377-0273(93)90044-R
Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geol. 94, 1193–1211 (1999).
doi: 10.2113/gsecongeo.94.8.1193
Sibson, R. H. Conditions for fault-valve behaviour. Geol. Soc., Lond., Spec. Publ. 54, 15–28 (1990).
doi: 10.1144/GSL.SP.1990.054.01.02
Sibson, R. H. Fluid involvement in normal faulting. J. Geodyn. 29, 469–499 (2000).
doi: 10.1016/S0264-3707(99)00042-3
Ohminato, T., Chouet, B. A., Dawson, P. & Kedar, S. Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii. J. Geophys. Res. 103, 23839–23862 (1998).
doi: 10.1029/98JB01122
Sibson, R. H. Arterial faults and their role in mineralizing systems. Geosci. Front. 10, 2093–2100 (2019).
doi: 10.1016/j.gsf.2019.01.007
Beroza, G. C. & Ide, S. Slow earthquakes and nonvolcanic tremor. Annu. Rev. Earth Planet. Sci. 39, 271–296 (2011).
doi: 10.1146/annurev-earth-040809-152531
Miyabuchi, Y. & Hara, C. Temporal variations in discharge rate and component characteristics of tephra-fall deposits during the 2014–2015 eruption of Nakadake first crater, Aso Volcano, Japan. Earth Planets Space 71, 44 (2019).
doi: 10.1186/s40623-019-1018-6
Ishii, K. Estimation of emission mass from an eruption plume for the Aso volcano eruption, on October 8, 2016, using a four-dimensional variational method. Earth Planets Space 70, 202 (2018).
doi: 10.1186/s40623-018-0964-8
Scandone, R. & Malone, S. D. Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J. Volcanol. Geotherm. Res. 23, 239–262 (1985).
doi: 10.1016/0377-0273(85)90036-8
Jaupart, C. & Tait, S. Dynamics of eruptive phenomena. Rev. Mineral. Geochem. 24, 213–238 (1990).
Newcombe, M. E., Plank, T., Barth, A., Asimow, P. D. & Hauri, E. Water-in-olivine magma ascent chronometry: every crystal is a clock. J. Volcanol. Geotherm. Res. 398, 106872 (2020).
doi: 10.1016/j.jvolgeores.2020.106872
Gonnermann, H. M. & Manga, M. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (Cambridge Univ. Press, 2013).
Ishii, K. et al. Gas flow dynamics in the conduit of Strombolian explosions inferred from seismo-acoustic observations at Aso volcano, Japan. Earth, Planets Space 71, 1–15 (2019).
doi: 10.1186/s40623-019-0992-z
Shimbori, T. Current status and perspectives on tephra transport models: volcanic ash fall forecasts of Aso volcano on 8 October 2016 as an example. Programme Abstr. Volcanol. Soc. Jpn. 2017, 5–5 (2017).
Mastin, L. G. et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 186, 10–21 (2009).
doi: 10.1016/j.jvolgeores.2009.01.008
Koyaguchi, T. An analytical study for 1-dimensional steady flow in volcanic conduits. J. Volcanol. Geotherm. Res. 143, 29–52 (2005).
doi: 10.1016/j.jvolgeores.2004.09.009
Cassidy, M., Manga, M., Cashman, K. & Bachmann, O. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 9, 1–16 (2018).
doi: 10.1038/s41467-018-05293-3
Kurihara, R., Obara, K., Takeo, A. & Tanaka, Y. Deep low-frequency earthquakes associated with the eruptions of Shinmoe-dake in Kirishima volcanoes. J. Geophys. Res. 124, 13079–13095 (2019).
doi: 10.1029/2019JB018032
Ikegaya, T. & Yamamoto, M. Spatio-temporal characteristics and focal mechanisms of deep low-frequency earthquakes beneath the Zao volcano, northeastern Japan. J. Volcanol. Geotherm. Res. 417, 107321 (2021).
Oppenheimer, C., Fischer, T. & Scaillet, B. Volcanic degassing: process and impact. Treatise Geochem. 4, 111–179 (2014).
doi: 10.1016/B978-0-08-095975-7.00304-1
Wielandt, E. & Forbriger, T. Near-field seismic displacement and tilt associated with the explosive activity of Stromboli. Ann. Geophys. 42, 407–416 (1999).
Graizer, V. Tilts in strong ground motion. Bull. Seismol. Soc. Am. 96, 2090–2102 (2006).
doi: 10.1785/0120060065
Zhu, L. Recovering permanent displacements from seismic records of the June 9, 1994 Bolivia deep earthquake. Geophys. Res. Lett. 30 (2003).
Wang, R., Schurr, B., Milkereit, C., Shao, Z. & Jin, M. An improved automatic scheme for empirical baseline correction of digital strong-motion records. Bull. Seismol. Soc. Am. 101, 2029–2044 (2011).
doi: 10.1785/0120110039
Storn, R. & Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997).
doi: 10.1023/A:1008202821328
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
doi: 10.1086/670067
Tape, W. & Tape, C. A geometric setting for moment tensors. Geophys. J. Int. 190, 476–498 (2012).
doi: 10.1111/j.1365-246X.2012.05491.x
Rivalta, E. & Segall, P. Magma compressibility and the missing source for some dike intrusions. Geophys. Res. Lett. 35, L04306 (2008).
Cigolini, C., Coppola, D., Yokoo, A. & Laiolo, M. The thermal signature of Aso Volcano during unrest episodes detected from space and ground-based measurements. Earth Planets Space 70, 1–15 (2018).
doi: 10.1186/s40623-018-0831-7
White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosystems 7 (2006).